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The detection of diseases is of vital importance to increase the productivity of soybean crops. The pres-
ence of the diseases is usually conducted visually, which is time-consuming and imprecise. To overcome
these issues, there is a growing demand for technologies that aim at early and automated disease detec-
tion. In this line of work, we introduce an effective (over 98% of accuracy) and efficient (an average time of
0.1 s per image) method to computationally detect soybean diseases. Our method is based on image local
descriptors and on the summarization technique Bag of Visual Words. We tested our approach on a data-
set composed of 1200 scanned soybean leaves considering healthy samples, and samples with evidence
of three diseases commonly observed in soybean crops – Mildew, Rust Tan, and Rust RB. The experimen-
tal results demonstrated the accuracy of the proposed approach and suggested that it can be easily
applied to other kinds of crops.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Soybean is one of the most important crops due to its beneficial
effects on human health, to its role as a major nutrition source, and
to its economic importance. It has been widely used in food and
industrial applications because of its high protein and oil concen-
trations (Kumar et al., 2010). Soybean occupies very large crops
in which the monocropping and conservation tillage are commonly
used. Such cultivation systems, however, have favored the occur-
rence of a large number of diseases (Carmona et al., 2015) causing
major economic losses. The solution is to apply preventive agro-
chemicals; but, because the identification of where the infestation
took place is time-consuming, the usual practice is to use agro-
chemicals over the entire crop instead of only over specific subar-
eas. This is an expensive practice that spreads unnecessary
chemicals over terrain and air.

Accordingly, a more precise detection of the disease spots in the
crop is an important step to decrease economic losses, to prevent
the spread of diseases, and to reduce environmental pollution.
Despite its importance, it is usually conducted visually by an
expert (Moshou et al., 2004), an imprecise and time-consuming
process, especially when carried out over large-scale farms. Alter-
natively, disease detection techniques based on chemical reactives
are available, such as the ELISA (enzyme-linked immunosorbent
assay) method and the PCR (polymerase chain reaction) method
(Saponari et al., 2008; Yvon et al., 2009; Gutiérrez-Aguirre et al.,
2009), however, they are expensive processes. Consequently, there
is a demand for rapid and cheaper detection methods.

In this context, one active line of research is the use of image
processing techniques. The idea is to have the computer analyze
images of soybean leaves (and of other cultures) to detect diseases
by means of pattern recognition methods. Gui et al. (2015), for
example, proposed a method for soybean disease detection based
on salient regions and k-means clustering. Shrivastava and Hooda
(2014) proposed a method for detecting brown spot and frog eye,
two common soybean diseases; they used shape features and k-
nearest neighbors classification. Ma et al. (2014) proposed a tech-
nique for detecting insect-damaged vegetable soybean using
hyperspectral imaging. A study to discriminate soybean leaflet
shape using neural networks was proposed in the work of Oide
and Ninomiya (2000). Yao et al. (2012) used hyperspectral images
to study the damage caused by the herbicide glyphosate on soy-
bean plants. Cui et al. (2010) reported image processing techniques
for quantitatively detecting rust severity from soybean multi-
spectral images.

Besides soybean, other cultures have been studied in the litera-
ture, such as the work performed by Rumpf et al. (2010), which
presents an automatic system for classification of foliar sugar beet
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diseases based on Support Vector Machines and spectral vegetation
indices. Moshou et al. (2004) investigated the automatic recogni-
tion of yellow rust in wheat using reflectance measurements and
neural networks. Liu et al. (2010) applied techniques neural network
and principal components analysis for classifying fungal infection
levels in rice panicles. Imaging techniques are also applied in the
recognition of plant species (Gonçalves and Bruno, 2013;
Casanova et al., 2012; Backes et al., 2010). A review of techniques
for detecting plant diseases can be found in the work of Sankaran
et al. (2010); a survey on methods that use digital image process-
ing techniques to detect plant diseases is presented in the work of
Barbedo (2013).

This paper proposes a novel approach for soybean disease
recognition based on techniques local descriptors and bag-of-
visual words. We experiment with five local descriptors (SURF,
HOG, DSIFT, SIFT, and PHOW, as detailed in Section 3) applied over
a large set of digital images (gray scale and colored) acquired from
a real-world soybean plantation in Brazil. The proposed approach
is applied to scanned images (visible spectrum to the human
eye), which does not require hyperspectral images and, therefore,
can be used with commodity hardware such as smartphones. From
the extracted features, we calculate a summary (lower-
dimensional) feature vector using technique bag of visual words
(BOVW).

The use of local descriptors is attractive because they are dis-
tinctive, robust to occlusion, and do not require segmentation.
Due to these advantages, several local descriptors have been pro-
posed in the literature. Scale-invariant feature transform (SIFT)
(Lowe, 2004) is one of the most used and known local descriptors.
Due to its good performance, SIFT was later applied at dense grids,
known as Dense SIFT (Vedaldi and Fulkerson, 2010; Liu et al.,
2011), and at multiscale dense grids, known as Pyramid histograms
of visual words (PHOW) (Bosch et al., 2007). SIFT also inspired
other local descriptors such as Speeded-up Robust Features (SURF)
(Bay et al., 2008), which uses some approximations to achieve bet-
ter performance. Histogram of oriented gradients (HOG) (Dalal and
Triggs, 2005) has also been widely used and has shown interesting
results, especially in pedestrian recognition. The reader may refer
to the work of Mikolajczyk and Schmid (2005) for a review of local
descriptors applied over images in general.

For classification purposes – considering classes disease and no
disease, we use the supervised machine learning technique Support
Vector Machine (SVM) having as input the BOVW vectors. We eval-
uate our classification using classic ten-fold cross-validation and
the metric Correct Classification Rate (CCR). In our experiments,
descriptor PHOW, over colored images, achieved the highest per-
formance. Therefore, we contribute by (i) introducing a systematic
method for computational identification of diseases in soybean
leaves; (ii) conducting an experiment over soybean that is
unprecedented in its control, methodology, and scale; (iii) empiri-
cally comparing the main local descriptors found in the literature,
providing guidance for future works on image-based classification.

The rest of this paper is organized as follows. Section 2
describes the fundamentals of bag-of-visual-words. The five local
descriptors evaluated in this work are described in Section 3. Sec-
tion 4 details the experimental design and the image dataset of
soybean leaves, while Section 5 describes the results of the pro-
posed approach. Finally, Section 6 concludes the paper and sug-
gests future works.
2. Bag-of-visual-words – BOVW

The bag-of-visual-words (BOVW) (Csurka et al., 2004) is a pop-
ular model for image recognition inspired by the bag-of-words
(BOW) used in natural language processing. According to BOVW,
descriptors are extracted from images in order to build a vocabu-
lary of visual words. Given the vocabulary, each descriptor of an
image is assigned to one visual word and then a histogram of visual
word occurrences is obtained to represent the image. Basically, this
model can be described in the following steps (Fig. 1):

(1) Feature extraction: in the first step, a local descriptor (such as
SIFT or SURF) is applied to the images to extract a set of
descriptors that are important to recognition tasks. For an
image I, a set DI ¼ ½d1; . . . ; dN� is composed by N descriptor
vectors di 2 RM , where M is the dimension that depends on
the local descriptor method. The N vector descriptors can
be extracted from salient regions by detecting keypoints or
in a dense grid of the image. Keypoints are locations of inter-
est in an image; they are invariant to linear transformations
and are able to boost description techniques. We use the
SIFT keypoint detection (Lowe, 2004). Fig. 1(a) illustrates
the feature extraction step.

(2) Vocabulary construction: given P training images, we build a
set with P descriptors D ¼ ½DI1 ; . . . ;DIP �, so that D contains
information from all training images. To build the visual
vocabulary, a clustering algorithm is applied for grouping
D such that descriptors in the same cluster are more similar
to each other than to those in other clusters. Each cluster
summarizes similar regions of the images by a single mean
vector called centroid. In the bag-of-visual-words, the cen-
troid is also called visual word. The most common clustering
algorithm is the k-means (Kanungo et al., 2002) due to its
simplicity and computational cost. The k-means partitions
the descriptor set D into k groups by minimizing the Eucli-
dean distance between descriptors. Thus, k visual words
C ¼ ½c1; . . . ; ck�; ci 2 RM composes the visual vocabulary. This
step is illustrated in Fig. 1(b).

(3) Histogram of visual word occurrence: given an image I, its
descriptor set DI ¼ ½d1; . . . ; dN�, and the visual vocabulary
C ¼ ½c1; . . . ; ck�, we build a histogram hI 2 Nk with k bins,
one for each visual word. Then, each descriptor di 2 DI is
assigned to the bin whose visual word is the closest to di

according to the Euclidean distance. An example of this step
can be seen in Fig. 1(c). An example of this step can be seen
in Fig. 1(c).

3. Local descriptors

This section briefly describes the local descriptors used by our
method for soybean disease recognition. We use gray-scale images
and the local descriptors are applied in sub-regions of the leaf
images, suggesting the use of local methods. Several methods for
generating local descriptors have been reported in the literature
and can be used as a previous step, such as selective search
(Uijlings et al., 2013), objectness (Alexe et al., 2012), category-
independent object proposals (Endres and Hoiem, 2014), con-
strained parametric min-cuts (CPMC) (Carreira and Sminchisescu,
2012), and multi-scale combinatorial grouping (Arbeláez et al.,
2014).
3.1. Scale-invariant feature transform – SIFT

Scale-invariant feature transform – SIFT (Lowe, 2004) is one of
the most important local descriptors. Basically, SIFT detects key-
points at multiple scales and extracts a local descriptor for each
keypoint that is invariant to uniform scaling, translation, rotation
and partially invariant to illumination changes. SIFT can be
described in the three steps below.



Fig. 1. Illustration of the bag-of-visual-words steps. (a) First, a local descriptor is applied to the images to identify keypoints and extract the descriptor vectors. (b) Then a
clustering algorithm is applied to the descriptor vectors in order to obtain visual words. (c) Finally, a histogram of visual word occurrences is calculated by assigning each
descriptor vector to one visual word of the vocabulary.
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(1) Scale-space and keypoint localization: the first step is to con-
volve the image with Gaussian filters at different scales.
Given an image I and a Gaussian filter G, the convolved
image can be obtained by Lðx; y;rÞ ¼ Iðx; yÞ � Gðx; y;rÞ,
where � is the convolution operator and r is the standard
deviation related to the scale. In order to detect keypoints
in the image, the difference of successive Gaussian-
smoothed images separated by a constant k is calculated:
Dðx; y;rÞ ¼ Lðx; y; krÞ � Lðx; y;rÞ: ð1Þ
The Difference of Gaussians – DoG is performed in different
octaves of the image in a Gaussian pyramid. Keypoints are
identified as local maxima and minima in Dðx; y;rÞ by com-
paring each point to its eight neighbors in the current image
and nine neighbors in the scale above and below. If the point
is larger or smaller than all of these neighbors, then it is
selected as a keypoint. The keypoints are refined by rejecting
points with low contrast or poorly located along an edge.
(2) Orientation assignment: to achieve invariance to rotation, it is
assigned one or more orientations to each keypoint based on
the local gradient directions. For the Gaussian-smoothed
image Lðx; y;rÞ at the keypoint scale of r, considering gradi-
ent mðx; yÞ (Eq. (2)) and orientation hðx; yÞ (Eq. (3)), it is cal-
culated a neighborhood around the keypoint location.
mðx;yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLðxþ 1;yÞ � Lðx�1;yÞÞ2 þ ðLðx;yþ1Þ � Lðx;y� 1ÞÞ2

q

ð2Þ

hðx; yÞ ¼ tan�1 Lðx; yþ 1Þ � Lðx; y� 1Þ
Lðxþ 1; yÞ � Lðx� 1; yÞ ð3Þ

An orientation histogram with 36 bins covering 360� is built
from the neighborhood gradient orientations. Each point
added to the histogram is weighted by its gradient magni-
tude. The orientations of the keypoint are given by the peaks
of this histogram.
(3) Keypoint descriptor: the two previous steps assign a location,
scale and orientation to the keypoints. This step computes a
descriptor vector for each keypoint to describe the local
region. First, the image gradient magnitudes and orienta-
tions are calculated around the keypoint. To achieve rotation
invariance, the gradient orientations and coordinates are
rotated with respect to the keypoint orientation calculated
in the previous step. Then a 4� 4 grid centered at the key-
point is placed over the image (the size of the grid is related
to the keypoint scale) and an orientation histogram with 8
directions is calculated for each of the 16 grids. Finally, the
keypoint descriptor is a vector d 2 R128 that concatenates
the orientation histogram of each of the 16 grids. The key-
point descriptor is normalized to unit length, then a thresh-
old of 0.2 is applied to reduce the influence of large gradient
magnitudes, and finally it is renormalized to unit length.
Fig. 2(d) shows an example of SIFT applied in a soybean leaf.

3.2. Dense scale-invariant feature transform – DSIFT

SIFT is a sparse local descriptor since it consists of both feature
detection and extraction. On the other hand, dense scale-invariant
feature transform – DSIFT (Vedaldi and Fulkerson, 2010; Liu et al.,
2011) extracts SIFT descriptors in a dense grid of the image (e.g.,
every 8 pixels). Thus, DSIFT assumes that all pixels or a grid of
them are keypoints of the image. To describe the keypoints, DSIFT
considers a fixed region around them, such as 16� 16 pixels. Fig. 2
(a) and (b) shows an example of SIFT and DSIFT applied to a soy-
bean leaf. SIFT detects and describes keypoints while DSIFT consid-
ers each pixel as a keypoint in order to describe them.

The advantage of SIFT compared to DSIFT is that the entire
image is used for feature extraction, although the number of
descriptors is generally greater than that of SIFT. On the other
hand, the steps for detecting keypoints are not necessary according
to the DSIFT method.

3.3. Pyramid histograms of visual words – PHOW

Pyramid histograms of visual words – PHOW (Bosch et al.,
2007) is a variant that applies DSIFT at multiple scales. While DSIFT
extracts descriptors using a fixed region around each keypoint on
the grid, PHOW extracts multiple descriptors for a keypoint using
increasingly larger square regions as shown in Fig. 2(c). In this fig-
ure, a keypoint is characterized by three descriptors, one for each
scale. Here, we have used four scales as suggested by authors
Bosch et al. (2007). Due to the multiple scales, PHOW describes
images at different scales better than DSIFT.

3.4. Speeded-Up robust features – SURF

Speeded-Up Robust Features – SURF (Bay et al., 2008) is a local
descriptor partly inspired by SIFT. By using integral images and
approximations, SURF can be computed faster than SIFT. The key-
points and descriptors can be obtained using the following steps.

(1) Keypoint localization: this step uses a basic Hessian-matrix
approximation, which uses integral images to reduce com-
putational time. Given a pixel ðx; yÞ in an image I, the Hessian
matrix Hðx; y;rÞ in ðx; yÞ at scale r is defined as
Hðx; y;rÞ ¼ Lxxðx; y;rÞ Lxyðx; y;rÞ
Lxyðx; y;rÞ Lyyðx; y;rÞ

� �
ð4Þ

where Lxxðx; y;rÞ is the convolution of the Gaussian second

order derivative d2

dx2 gðrÞ over a given image I at pixel ðx; yÞ;



(a) SIFT (b) DSIFT (c) PHOW (d) SURF

Fig. 2. Example of SIFT, DSIFT, PHOW and SURF applied to a soybean leaf. SIFT and SURF detect and describe keypoints, while DSIFT and PHOW extract a descriptor at each
grid region of the image. Unlike DSIFT, PHOW uses multiple scales, which are related to the region around the keypoints.
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similarly for Lxyðx; y;rÞ and Lyyðx; y;rÞ. Since the convolutions
Lxx; Lxy; Lyy are costly to calculate, SURF discretizes the Gaus-

sian second order derivative d2

dx2 gðrÞ using box filters. The
box filters make efficient convolution through integral
images (Bay et al., 2008).
The approximated determinant of the Hessian matrix repre-
sents the blob response at location ðx; yÞ and scale r. The
greater the blob response, the greater the importance of the
pixel in the image. The responses are calculated over several
scales using boxes of different sizes, and a non-maximum
suppression in a 3� 3� 3 neighborhood is applied in order
to localize keypoints.
(2) Orientation assignment: to be invariant to image rotation,
SURF assigns a reproducible orientation for each keypoint.
To this end, Haar wavelet responses are calculated in x-
and y-directions within a circular neighborhood of radius
6s, where s is the keypoint scale. Again, these responses
can be calculated efficiently with the use of integral images.
The wavelet responses are represented as points in a 2-
dimensional space with the x-direction response in the
abscissa and the y-direction in the ordinate. The horizontal
and vertical responses within sliding windows of size p

3 are
summed, forming a local orientation vector for each win-
dow. The largest vector of all windows defines the orienta-
tion of the keypoint.

(3) Keypoint descriptor: the keypoint descriptor is obtained from
a square region with size 20s centered around the keypoint
and oriented along the keypoint orientation. The square
region is split into 4� 4 sub-regions, and for each sub-
region, a vector v with four values is calculated:
v ¼ P
dx;

P jdxj;Pdy;
P jdyj½ � ð5Þ

where dx and dy are, respectively, the wavelet response in the
x- and y-directions computed at 5� 5 regularly spaced sam-
ple points. Finally, the keypoint descriptor is composed by
concatenating each of 16 sub-region vectors v, thereby form-
ing a single vector with 64 values. Fig. 2(d) shows an example
of the SURF applied to a leaf image.
3.5. Histogram of oriented gradients – HOG

The histogram of oriented gradients (HOG) (Dalal and Triggs,
2005) is a feature descriptor first proposed for pedestrian detection
in images. Basically, it decomposes the image into a dense grid of
cells, computes a histogram of oriented gradients in each cell,
and normalizes the histogram using the overlapping local contrast
of its cells. This descriptor can be described in three steps:

(1) Gradient computation: the first step is the computation of
gradient values using a 1-D centered derivative mask in both
horizontal and vertical directions using masks ½�1;0;1� and
½�1;0;1�T . The authors evaluated other complex masks (e.g.,
cubic-corrected, 3� 3 Sobel and 2� 2 diagonal masks), but
they decrease performance in object detection tasks.

(2) Spatial/orientation binning: the second step divides the image
into rectangular cells and, for each one, calculates an edge-
oriented histogram. The bins of the histogram are evenly
spaced over 0–180� and each pixel contributes with a
weighted vote for the edge-oriented histogram based on
its gradient. Dalal and Triggs (2005) found that 9 bins per-
form the best.

(3) Normalization and descriptor block: for better invariance to
illumination and contrast, the gradient strengths are locally
normalized by grouping cells into blocks. The blocks overlap,
which means that a cell belongs to more than one block. Fol-
lowing the original work, we have used rectangular blocks
(R-HOG blocks), 2� 2 cell blocks of 8� 8 pixels cells. To nor-
malize each histogram, let v be a non-normalized vector
composed by concatenating all histograms of a given block.
Then, the concatenated histogram is normalized by

v 0 ¼ v=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjvjj22 þ e2

q
, where e is a regularization term. The

normalized vector v 0 is the descriptor calculated at the dense
grid of the image.

4. Material and methods

4.1. Experimental design

The plant experiment was done in four fields of the Phy-
topathology Department of the Federal University of Grande
Dourados (UFGD), Brazil. The crop evaluated was soybean [Glycine
max (L.) Merr.] of BMX Potencia RR� (BRASMAX).

The density of the soybean fields was of about
300,000 plants ha�1. For all fields, 320 kg ha�1 of N-P-K (02-23-
23) were applied in-furrow immediately before sowing. No N-
fertilizer was applied in any field. The experimental design was a
completely randomized block with four replicates. Each plot had
50 rows, spaced by 0.5 m, with 50 m (width) � 25 m (length)
(1250 m2). Plots were separated by at least 10 m, where small ter-
races of approximately 5 m width were built to prevent contami-
nation by superficial run-off containing bacteria or fertilizer,
which could occur due to heavy rains that commonly occur in
the summer season. We did not use herbicides in three fields out
of four. For one field, herbicides were used in order to have samples
with no disease, while insects were controlled with biological and
chemical insecticides.

In Dourados (22�220S and 54�800W) the fields are at an altitude
of 600 m and the soil is classified as Latossolo Vermelho Distrófico
(Brazilian classification), or as Typic Haplustox (Soil Taxonomy,
USDA). The climate is classified as tropical with dry winter and
wet summer.
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4.2. Image sampling

Plant leaves were randomly collected in three different stages:
V4 – forth trifoliate, V5 – fifth trifoliate and R1 – blooming stage.
At the V4 and V5 stages, nine plants were randomly collected per
plot for evaluation of leaf diseases, especially those related to fungi.
At stage R1, nine plants were collected for evaluation. Sampled
material was split in the trifoliates of the growing stage. For this
region of Brazil, two classes of diseases are commonly found: mil-
dew and soybean rust. Soybean rust is caused by the fungus
Phakopsora pachyrhizi Sydow & Sydow. During collection, we cre-
ated groups of leaves classified according to two types of color
lesions: Rust TAN and Rust RB. TAN lesions are tan in color, and
RB refers to reddish-brown lesion color (Bonde et al., 2006). The
RB lesion type is considered a resistant lesion type when compared
to a fully susceptible TAN lesion (Miles et al., 2007). Furthermore,
RB lesions are not sparsely sporulating uredinia.

After sampling the crops, the collected leaves went through a
digital image acquisition, as illustrated in Fig. 3. The idea consists
three parts: (1) scanning of leaves, (2) texture sample picking,
and (3) set of texture samples. Digital images were acquired by
scanning each leaf.

In this study, we used a scanner model HP Scanjet 1200, at
1200 dpi resolution, with images generated in tiff format. For each
sampling of the plant stage, nine images were collected. From each
leaf scanning, a specialist manually spotted 200 � 200 windows
recognized as evidence of disease. We selected 300 windows of
each disease (Mildew, Rust RB and Rust Tan), totalizing 900 sub
images. Another 300 were collected from the healthy plants. Such
sub image windows were saved without file compression. There-
fore, the image dataset is composed of 1200 samples divided into
four classes, three of them attacked by fungi and one without
diseases.

5. Experiments and discussion

In this section, we describe experiments and results obtained
with the use of local descriptors and BOVW. In the classification
step, we have used the Support Vector Machine – SVM classifier
using stratified 10-fold cross-validation. This methodology is
well-accepted in machine learning and artificial intelligence. In
the stratified 10-fold cross-validation, the images of the dataset
are partitioned into 10 folds ensuring that each fold has the same
proportion of each class. Then, one fold is used for testing while
the remaining folds are used for training the SVM classifier. The
process is repeated 10 times using each fold exactly once. Finally,
the Correct Classification Rate (CCR) corresponds to the average
of the 10-rounds execution.
(1) Scanning of leaves (2) Texture sam

Fig. 3. Image acquisition procedure adopted in this
5.1. Local descriptor comparison

We have compared the local descriptors using different num-
bers of k visual words, as presented in Fig. 4. As can be seen in
the figure, local descriptor PHOW overcame the other local
descriptors for all values of k. SIFT and DSIFT also performed well
with a CCR nearly of 90%. On the other hand, HOG and SURF
showed the worst performance with CCRs around 80% and 70%,
respectively.

Table 1 shows the best CCR for each local descriptor and its
respective number of visual words k. Comparing dense local
descriptors, PHOW, DSIFT, and HOG provided, respectively,
96.25%(±1.53), 90.00%(±1.76), and 80.00%(±3.04) for 3500, 2000,
and 1000 visual words. For sparse local descriptors, SIFT and SURF
achieved 93.66%(±2.58) and 71.25%(±3.50) using, respectively,
k ¼ 3500 and 500.

To better visualize the performance of each descriptor, Fig. 5
presents the confusion matrices for the best configuration of visual
words. We can observe that, for all the local descriptors, Rust RB
and Rust TAN diseases are the most imprecise, while Mildew was
classified more accurately. As described previously, PHOW has
shown a good characterization of soybean diseases, especially for
classes Mildew and Healthy. Despite the superiority to other
descriptors, PHOW wrongly classified 13 images of Rust RB as Rust
TAN and 21 images of Rust TAN as Rust RB.
5.2. Color local descriptor

In order to improve the characterization of soybean diseases,
this section presents the results obtained by the application of
PHOW to color images. We have chosen this local descriptor since
it provided the best performance as shown in the previous section.
For color images, PHOW is applied to each channel of the color
space and the descriptors are concatenated to form a single
descriptor with color information. Then, BOVW is applied in the
same way as before.

Fig. 6 shows the results of descriptor PHOW applied to color
spaces RGB, HSV, and Opponent color spaces (van de Sande et al.,
2010) using different values of k. As it can be seen, the three PHOW
color variants improved the CCR compared to the PHOW grayscale
variant. Comparing only color variants, PHOW-HSV and PHOW-
Opponent have shown similar results, and superior results if com-
pared to PHOW-RGB. These results demonstrate that HSV and
Opponent color spaces are better suited to represent color, which
is important for the analysis of leaves. In addition, it is worth to
note that, using only 50 visual words, PHOW-HSV provided 96.42
(±1.62), an excellent result with fewer features.
ple picking (3) Set of texture samples

study. Four classes compose our image dataset.
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Fig. 4. CCR obtained by the five local descriptors using different values of k.

Table 1
Best CCRs obtained by each local descriptor and its respective number of visual words.

Local descriptor k CCR F-measure

SURF 500 71.25(±3.50) 0.71(±0.03)
HOG 1000 80.00(±3.04) 0.80(±0.12)
DSIFT 2000 90.00(±1.76) 0.90(±0.07)
SIFT 3500 93.66(±2.58) 0.94(±0.05)
PHOW 3500 96.25(±1.53) 0.96(±0.03)
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Fig. 6. CCR obtained by the three PHOW color variants using different values of k.

Table 2
Experimental results related to the application of PHOW to each channel of the RGB,
HSV, and Opponent color spaces.

Local descriptor k CCR F-measure

PHOW-Gray 3500 96.25(±1.53) 0.96(±0.03)
PHOW-RGB 3000 98.75(±0.98) 0.99(±0.01)
PHOW-HSV 2000 99.83(±0.35) 1.00(±0.00)
PHOW-Opponent 2000 99.58(±0.44) 1.00(±0.00)
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Table 2 summarizes the best results obtained by each PHOW
variant. The best performance of 99.83(±0.35) was obtained by
PHOW-HSV followed by PHOW-Opponent, then PHOW-RGB, and
PHOW-Gray with 99.58(±0.44), 98.75(±0.98), and 96.25(±1.53),
respectively. We can also observe that PHOW-Gray requires more
visual words than the color variants to achieve better accuracy.
Using 2000 visual words, PHOW-HSV and PHOW-RGB achieved
their best result while PHOW-Gray required 3500 visual words.
These results corroborate the improvement to soybean disease
characterization using color.

The confusion matrices for the PHOW color variants are shown
in Fig. 7. As one can see, the three PHOW color variants improved
(a) SIFT (b) SURF

(e) PHO

Fig. 5. Confusion matrices of each local descriptors using the best configuration of visual
the characterization of soybean diseases. PHOW-HSV and PHOW-
Opponent missed only two and five samples of Rust TAN and Rust
RB diseases, respectively. These excellent results are corroborated
by the scatter plots of Fig. 8. In these plots, the features extracted
using the best configuration of visual words are projected into a
two-dimensional space using Principal Component Analysis
(Fukunaga, 1990). We can observe that Healthy and Mildew are
better represented by all PHOW color variants. Due to the similar-
ity of the samples, Rust RB and Rust TAN are spatially close in the
projected space, although they can be effectively discriminated
using PHOW color variants.
(c) HOG (d) DSIFT

W

words. The main diagonal corresponds to the number of accurately classified leaves.



(a) PHOW-Gray (b) PHOW-RGB (c) PHOW-HSV (d) PHOW-Opponent

Fig. 7. Confusion matrices of each color variant of descriptor PHOW using the best configuration of visual words.

(a) PHOW-Gray (b) PHOW-RGB (c) PHOW-HSV (d) PHOW-Opponent

Fig. 8. Features of each PHOW color variant projected using Principal Component Analysis into a two-dimensional space.
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5.3. Computational cost

In this section, we show the wall-clock time, in seconds, to com-
pute the local descriptors. The experiments are performed on an
Intel Core i5 1.3 GHz with 4 GB of RAM running OSX 10.9.5. The
time was measured only for the stages of keypoint detection and
extraction, excluding the time spent on secondary steps, such as
image reading. The values correspond to the mean and standard
deviation calculated for 1,200 images of 200� 200 pixels.

In our experiments, HOG was the fastest, taking 0:0043ð�0:001Þ
s to process each image. As expected, SURF with an average time of
0:011ð�0:016Þ s was faster than SIFT with as average of
0:064ð�0:011Þ. Regarding dense local descriptors, DSIFT and
PHOW performed with an average time of 0:134ð�0:001Þ and
0:143ð�0:006Þ seconds per image, respectively. In general, all local
descriptors perform in an acceptable running time.
6. Conclusion

Soybean disease detection is an important process to decrease
economic losses in agriculture, and to reduce environmental pollu-
tion due to the excessive use of agrochemicals. Answering to this
demand, we proposed a new approach for automated detection
of soybean diseases. We used image local descriptors and Bag of
Visual Words (BOVW) to define a methodology able to computa-
tionally represent images of soybean leaves, while maintaining
visual information regarding potential diseases. Our experiments
compared the use of 8 local descriptor variants using an image
dataset composed of 1200 leaves. We considered healthy leaves
and leaves infected by diseases Mildew, Rust Tan, and Rust RB.

The experimental results showed that the use of local descrip-
tors, together with the BOVW technique, were effective (over
98% of accuracy) and efficient (an average time of 0.1 s per image)
in the task of computationally detecting soybean diseases. These
results showed that descriptor PHOW provided the best result, fol-
lowed by descriptors SIFT and DSIFT. We found out that descriptor
PHOW works better for color spaces if compared to the gray scale,
reaching correct classification rates ranging from 96.25% (±1.53) to
99.83 (±0.35). Due to the generality of the method, we believe it
can be applied to other crops, such as cotton or wheat.

The proposed approach can be employed as a tool to guide
users, such as farmers and non-experts, so to identify diseases in
soybean crops. In practice, the user can scan leaves with a com-
modity cell phone directly in the soybean crop and apply the pro-
posed approach. In the future, the images may be automatically
obtained with a scanner embedded in agricultural machinery, or
in unmanned aerial vehicles.

As part of the future work, we plan to evaluate other steps of the
BOVW, such as the vocabulary construction and the feature coding.
We also consider investigating diseases in their early stages and
measuring their severity.
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