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Abstract— Soybean has been the main Brazilian agricultural
commodity, contributing substantially to the country’s trade
balance. However, foliar diseases are the key factor that can
undermine the soy production, usually caused by fungi, bacteria,
viruses, and nematodes. This letter proposes a computer vision
system to track soybean foliar diseases in the field using images
captured by the low-cost unmanned aerial vehicle model DJI
Phantom 3. The proposed system is based on the segmentation
method Simple Linear Iterative Clustering to detect plant leaves
in the images and on visual attributes to describe the features
of foliar physical properties, such as color, gradient, texture, and
shape. Our methodology evaluated the performance of six classi-
fiers for different heights, including 1, 2, 4, 8, and 16 m. Exper-
imental results showed that color and texture attributes lead
to higher classification rates, achieving the precision of 98.34%
for heights between 1 and 2 m, with a decay of 2% at each
meter. Results indicate that our approach can support experts
and farmers to monitor diseases in soybean fields.

Index Terms— Aerial images, precision crop protection,
soybean foliar diseases, unmanned aerial vehicle (UAV)-based
remote sensing.

I. INTRODUCTION

SOYBEAN (Glycine max) has been the main Brazilian
agricultural commodity, with an important economic con-

tribution in the Brazilian trade balance. Despite the satisfactory
numbers, many diseases—caused by fungi, bacteria, viruses,
and nematodes—have considerably attacked soybean crops in
different states. Early diagnosis of diseases is quite important
to the pesticide management in the crop and, consequently,
can reduce the environmental impact of agrochemicals and
economic losses.

Pest control usually consists of taking decisions based on the
level of infestation and on the development stage of the soy-
bean plant. However, such an information can be obtained with
regular inspections by sampling different regions of the field,
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and the inspection is performed visually from the ground [1].
Furthermore, the high cost of chemicals associated with low
ecological impact actions lead to better practices of precision
agriculture. Thus, the use of unmanned aerial vehicles (UAVs)
in crop fields has been considered an important tool to identify
patches of diseases, allowing experts and farmers to take better
decisions.

In this letter, we have proposed a computer vision system
to identify automatically foliar soybean diseases from aerial
images captured by a low-cost and well-known UAV model
in the market, named DJI Phantom 3. We have first considered
an image segmentation step to detect the plant leaves in the
images taken in the flight inspection. We describe the leaves
using visual features, including color, gradient, texture, and
shape. Our methodology evaluates six well-known classifiers
from the literature, for five different heights. The proposed
approach was tested using a data set with 3624 images divided
into three classes: target spot, powdery mildew, and with no
disease. The best performance on foliar disease identification
was using heights between 1 and 2 m, once the plant image
resolution changes to higher flights. Experimental results com-
pared our results with local descriptors using the UAV images.

This letter is organized as follows. Section II presents a
review of the literature. The proposed approach to identify
soybean foliar diseases is described in Section III. Section IV
describes the materials and methods adopted in this
research. Section V describes the experimental results,
followed by a brief discussion. Finally, conclusions and future
works are given in Section VI.

II. RELATED WORKS

The application of UAV-based remote sensing has increased
the opportunities in precision crop protection, including the
detection, monitoring, and identification of weeds and plant
diseases. Computer vision and machine learning methods
have played a major role for automatic measurement and
classification of the remote images. In the literature, there exist
several reviews comparing different imaging sensors [2] and
machine learning algorithms [3], [4] in order to identify plant
diseases in different crops. However, a few of them addresses
the use of images collected from UAVs for the identification of
soybean diseases. In this context, using single scanned images,
Pires et al. [5] proposed a method to identify soybean foliar
diseases based on local descriptors and bag-of-visual words.
Reference [6] reported a method for soybean leaf detection
based on salient regions and k-means clustering. Reference [7]
proposed a method for detecting brown spot and frog eye,
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two common soybean foliar diseases, by using shape features
and k-nearest neighbors (k-NN) classification; images were
taken with smartphones.

Recent studies on crop protection, using images obtained
from UAV-based remote sensing and machine learning algo-
rithms, were proposed to identify diseases in citrus [8] and
detect weeds in wheat [9] and also in maize [10]. Similarly,
Torres-Sánchez et al. [11] proposed a method based on
UAV-images for the identification of weed plants, and [12]
presented a machine learning strategy for weed monitoring.
Bajwa et al. [13] used a remote sensing with visible and near-
infrared imaging to detect two soybean diseases, including
cyst nematode and sudden death syndrome. Yuan et al. [14]
recently used UAVs to measure the soybean leaf area index.

III. PROPOSED APPROACH

In this section, we introduce a computer vision approach to
identify soybean foliar diseases via UAV-images. The proposed
approach adopts the Simple Linear Iterative Clustering (SLIC)
superpixels algorithm, proposed by Achanta et al. [15],
in order to detect the plant leaves in the images. The SLIC
algorithm was chosen because it is faster with linear com-
plexity, more memory efficient than methods based on super-
pixels, and it yields the state-of-the-art adherence to image
boundaries, which outperforms existing methods when used
for image segmentation.

The method SLIC employs the k-means algorithm for the
generation of regions, called superpixels. The parameter k of
the algorithm refers to the number of superpixels in the image
and it allows to control the shape and size of the superpixels.
Here, we adjust the parameter k to better segment the soybean
plant leaves.

The superpixel SLIC algorithm groups pixel according to
the color of the pixels using the CIELAB components, L,
a, and b, as well as the x- and y-coordinates of the pixels.
An input image is segmented into rectangular regions by
defining the number k of superpixels, with approximately
(N/k) pixels, where N is the number of pixels of the image.
Each region composes an initial superpixel of dimensions
S × S, where S = [(N/k)]1/2. The centers of superpixel
clusters Ck = [lk, ak, bk, xk, yk] with k = [1, k] are chosen,
spaced on a regular grid to form clusters of approximate
size S2. The centers are moved to the lowest gradient value
over a 3×3 pixel neighborhood, avoiding centroid allocation in
edge regions or having noisy pixels. Instead of using a simple
Euclidean norm in the 5-D space, a distance measure Ds is
defined as follows:

dlab =
√

(lk − li )2 + (ak − ai )2 + (bk − bi )2 (1)

dxy =
√

(xk − xi )2 + (yk − yi )2 (2)

Ds = dlab + m

s
∗ dxy (3)

where Ds is the sum of the distance dlab [see (1)] and the
distance dxy [see (2)], normalized by the interval S. The para-
meter m corresponds to the superpixel compactness control;
the greater the value is, the more compact the clustering is
in terms of spatial proximity. Each pixel of the image is

Fig. 1. Proposed computer vision system to identify soybean foliar diseases
with UAV-images. (a) Image acquisition. (b) SLIC segmentation. (c) Image
data set. (d) Feature extraction. (e) Image disease classification.

associated with the closest centroid, and after all the pixels
are associated with a centroid, a new center is calculated with
the Labxy vector of all superpixels belonging to the group.
At the end of the process, some pixels may be connected to
a group incorrectly, so the algorithm reinforces connectivity
in the last step by assigning the pixels alone to the largest
neighboring groups [15].

A schematic of the proposed system is shown in Fig. 1.
It illustrates the methodology that consists of five steps:
(a) image acquisition; (b) SLIC segmentation; (c) image data
set; (d) feature extraction; and (e) leaf disease classification.
Initially, the flight inspection was conducted with the UAV in
the field to capture images of soybean crop fields at different
heights (see step (a) in Fig. 1). These images were segmented
by using the SLIC superpixels method (see step (b) in Fig. 1).
Each superpixel segment has been visually classified into a
specific class: target spot, powdery mildew, or healthy leaf
samples.

After segmenting the image with the superpixel method
SLIC, leaf segments belonging to a certain class were visually
analyzed by an agronomist in order to construct an image data
set for training and testing of the system (see step (c) of Fig. 1).
In this case, the agronomist was responsible for assess-
ing the representativeness of samples for statistical analysis.
Subsequently, images were described as features based on
color, gradient, texture, and shape (see step (d) of Fig. 1).
At each height, leaf image samples were used in the classifi-
cation of soybean foliar diseases (see step (e) of Fig. 1). The
final step shows a test image assessed by our computer vision
system. The result of the percentage of classification is shown
in the screenshot of our tool.

IV. MATERIALS AND METHODS

A. Experimental Design
For the experiments, we conducted several tests to find

the highest foliar disease classification according to spe-
cific heights of the UAV, including 1, 2, 4, 8, and 16 m.
To this end, images were captured from an experimental
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Fig. 2. (a) Experimental area used for planting soybean crop from top
view (image created with Google Earth). (b) and (c) Image samples obtained
by the UAV with heights of 4 and 16 m, respectively.

soybean field, as shown in Fig. 2(a). We collected images in
different days and with different weather conditions. A total
amount of 300 aerial images were taken in the crop year
September 2016–February 2017. In order to identify the plant
diseases in the images, each image was segmented by using
the superpixel-based method, according to the parameter k that
better adjusts the detection of the leaves in the plant. The value
of k was set to divide the plant images into k leaf segments.
Accordingly, the parameter k was defined by the boundary
adherence of the algorithm SLIC. Each image has a dimension
of 4000×3000 pixels, totalizing 12 000 000 pixels. A soybean
individual leaf at a height of 1 m has about 12 000 pixels. Thus,
the segmentation parameter k was set to 1000 regions; dividing
12 000 000 pixels by 1000 regions, we got 12 000 pixels for
each leaf. The same idea was considered to double the height,
i.e., if we have a height of 2 m, the number k of regions was
2000, and so on. After image SLIC segmentation, 3624 images
of superpixels were generated, that is, leaf images divided into
three classes of the soybean diseases: target spot, powdery
mildew, and leaves with no disease.

With the support of an agronomist, each image was anno-
tated in order to construct the image data set and the machine
learning model. Images were captured in the digital negative
(DNG) format, with different heights using the DJI Phantom
3 Professional, equipped with a Sony EXMOR sensor of 1/2,
3-in and 12.3-megapixel resolutions. In Table I, we obtained
the ground sample distance (GSD) with a real focal length
of 3.57 mm for different flight altitudes, showing the area
with its respective GSD. The images were captured in the
crop fields, using a 90° angle of the camera in relation to the
ground. Thus, it was possible to calculate how many pixels
has one leaf in the images taken under different heights.

B. Feature Extraction and Classification

There exist several visual attributes that describe physical
properties of images, which rely mainly on color, gradient,

TABLE I

GSD VALUES CALCULATED FOR DIFFERENT HEIGHTS OF PHANTOM 3

texture, and shape. Color attributes focus on physical proper-
ties of object surfaces as it reflects different wavelength values.
Texture attributes focus on describing images as repetitive
patterns that can vary according to the size, which produces
different tactile sensations associated with roughness, coarse-
ness, and regularity. Shape describes images according to the
contour of the objects, while gradient features are based on the
derivatives in different directions of the image. In our image
classification system, we have used as features the following
methods.

1) Color: color statistics [16].
2) Gradient: histogram of oriented gradients [17].
3) Texture: gray-level cooccurrence matrix [18] and local

binary patterns [19].
4) Shape: Hu’s moment and central moments [20].

For image classification, machine learning algorithms use
the described images to identify and classify according to
visual patterns. Here, we have employed supervised learning
models with training and test sets divided according to the
tenfold cross validation. We compared well-known classi-
fiers, including sequential minimal optimization (SMO) [21],
Adaboost [22], decision trees using the J48 algorithm [23],
(k-NN) [24], random forest [25], and naive Bayes [26],
in order to statistically evaluate the potential of the proposal
of soybean foliar recognition in the field assessing different
heights.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we describe experiments and results obtained
by the proposed approach. In the classification task, we sub-
mitted to the machine learning models images captured in dif-
ferent heights. To evaluate the performance of the classifiers,
correct classification rate (CCR) was used. For training and
testing of the classifiers, stratified tenfold cross validation was
used. In this scheme, images of the data set are partitioned
into tenfolds ensuring that each fold has the same proportion
of each class. Then, onefold is used for testing, while the
remaining folds are used for training the SMO classifier. The
process is repeated ten times using each fold exactly once
for testing. Finally, the CCR is given by the mean of the
ten rounds. For each algorithm tested, we also calculated the
average performances for the CCR and F-measure metrics.

To verify if the algorithms tested differ statistically in
relation to performance and height, we used the ANOVA
hypothesis test in RStudio, with each block corresponding to
one of the classes of the problem. The p-values found for each
metric and the level of significance required were reported to
discard the null hypothesis. Then, the data were analyzed from
a descriptive statistical line in the boxplot diagram.
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Fig. 3. CCR obtained at different heights using combined feature extractors
based on color, gradient, and texture.

Fig. 4. Boxplot diagram comparing the performance among classifiers for
the CCR metric.

A. Classifier and Height Evaluation

Fig. 3 shows the results obtained by six classifiers well-
accepted in machine learning and artificial intelligence,
as described in Section IV. The best performance of the CCR
was obtained by the SMO classifier, followed by the random
forest method.

Fig. 4 shows the performance of each classifier, with the
median value highlighted in the boxplot diagram. The diagram
also shows the range of performance variation obtained from
each classifier. In the figure, the SMO classifier presented the
best CCR, having a higher value for the median and dispersion
of data in the best value range for CCR.

In Fig. 5, we can observe that the values of the medians
and of the dispersions of data resulted in a better range of
CCR between the heights of 1 and 2 m. These heights did
not present significant variations in the realized experiments,
having strong statistical evidence of similarity.

B. Feature Extraction Evaluation

Another goal of the experiments was to evaluate the individ-
ual performance of the attributes extracted for the recognition
of soybean leaf diseases. For this purpose, the attributes based
on color, gradient, texture, and shape were compared in terms
of CCRs calculated by the classifiers at different heights,
as shown in Fig. 6. The results of this experiment demonstrate
that color is the most important attribute when compared with
the gradient and shape attributes in the task of soybean leaf
disease recognition.

Fig. 5. Boxplot diagram comparing performance among classifiers to
different heights.

Fig. 6. CCRs obtained by classifiers at different heights using attribute
extractors based on color, gradient, texture, and shape.

TABLE II

COMPARISON OF OUR APPROACH WITH LOCAL DESCRIPTORS FOR

SOYBEAN LEAF DISEASE IDENTIFICATION UNDER

TWO DIFFERENT HEIGHTS

C. Comparison With Local Descriptors

In this experiment, we compared our approach with local
descriptors used to identify soybean foliar diseases using
a desktop scanner, proposed in [5]. To this end, we used
the same implementation of the authors applied to the best
altitudes, 1 and 2 m. We also used the best parameters k for
each local descriptor tested in [5], in order to set the number
of visual words used in the dictionary of the bag-of-visual
words approach.

Table II shows the CCR for each local descriptor and two
classifiers, SVM and k-NN. As can be seen, our approach
overcame the local descriptor methods for all values of k. Our
approach achieved the best result with the classifier SVM. The
local descriptors methods PHOW, DSIFT, and HOG provided
69.72%, 63.05%, and 62.77% for 3500, 2000, and 1000 visual
words, respectively. For sparse local descriptors, SIFT and
SURF achieved 46.94% and 56.38% with images taken under
the height of 1 m.

The SVM model exhibited the highest accuracy, using
features based on color and texture. Local descriptors-based
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methods did not achieve the same accuracy as reported in [5]
because of the distance between the camera and the leaf,
if compared with any desktop scanner. Therefore, the SVM
was the most suitable model for the classification of soybean
diseases using images from the UAV Phantom 3, and the most
appropriate height was 1 m.

VI. CONCLUSION AND FUTURE WORK

In this letter, we have proposed a new approach based on the
segmentation method SLIC to identify soybean foliar diseases
using UAVs. We considered an image segmentation step in
order to detect the plant leaves in the images taken with
flights of a Phantom UAV model. Subsequently, we described
the leaves using visual features, including color, gradient,
texture, and shape. In the classification step of our approach,
we compared six well-known classifiers in the literature.
The experiments were able to support the hypothesis of our
approach that closer heights between the UAV and the plant
presented higher classification rates. The CCR confirmed that
our approach achieved the precision of 98.34% in foliar
disease identification using heights between 1 and 2 m, with
a decay approximately of 2% at each meter, once the plant
image resolution changes to higher heights. Experimental
results also showed that color and texture attributes lead to
higher classification rates. In addition, with the experiments,
we were able to determinate the lower height limit of our
approach. Although we can take photographs with different
heights, when using different lenses, we recommend experts
to consider heights higher than 1 m, because UAV rotor
blades can shake considerably the plant leaves. As part of the
future work, we intend to test convolutional neural networks,
increasing the amount of diseases. We also consider evaluating
our approach with higher resolution and multispectral cameras.
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