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a b s t r a c t 
We introduce a method for shape recognition based on the angular analysis of Complex Networks. Our 
method models shapes as Complex Networks defining a more descriptive representation of the inner an- 
gularity of the shape’s perimeter. The result is a set of measures that better describe shapes if compared 
to previous approaches that use only the vertices’ degree. We extract the angle between the Complex 
Network edges, and then we analyze their distribution along with a network dynamic evolution. The 
proposed approach, named Angular Descriptors of Complex Networks (ADCN), presents a high discrimi- 
natory power, as evidenced by experiments conducted in five datasets. It is rotation invariant, presents 
high robustness against scale changes and degradation levels, overcoming traditional methods such as 
Zernike moments, Multiscale Fractal dimension, Fourier, Curvature and the degree-based descriptors of 
Complex Networks. 

© 2017 Elsevier Ltd. All rights reserved. 
1. Introduction 

In a general sense, shape is a preeminent property of almost 
every entity in the physical world. A large range of objects can 
be discriminated by their shape, including not only natural cir- 
cumstances but also synthetic phenomena. In computer vision and 
pattern recognition, the shape is considered one of the most im- 
portant features for the identification and distinction of objects in 
various scenarios ( Loncaric, 1998 ). The principle of shape-oriented 
analysis is to extract information able to characterize the elements 
of specific domains, leading to methods used in a wide scope of 
applications, in areas such as medicine ( Shen, Rangayyan, & Desau- 
tels, 1994 ), biology ( Neto, Meyer, Jones, & Samal, 2006 ), and people 
tracking ( Wang, Tan, Hu, & Ning, 2003 ). 

Shape descriptors can be divided into two main categories: 
those based on contours, and those based on regions ( Mehtre, 
Kankanhalli, & Lee, 1997; Zhang & Lu, 2004 ). Contour-based ap- 
proaches focus on extracting information located at the edges of 
the shape, while region-based approaches consider all the pixels of 
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a certain region of the shape. Among the contour-based techniques, 
we can cite descriptors based on the Fourier transform ( Persoon 
& Fu, 1977 ), on Curvature ( Wu & Wang, 1993 ), on Zernike mo- 
ments ( Zhenjiang, 20 0 0 ), on multiscale fractal dimension ( Torres, 
Falcão, & Costa, 2004 ), and on multiscale triangle representation 
( Mouine, Yahiaoui, & Verroust-Blondet, 2013 ). The region-based de- 
scriptors are based on Zernike moments ( Kim & Kim, 20 0 0 ), on 
invariant moments ( Chen & Tsai, 1993 ), and on histograms of gra- 
dients ( Xiao, Hu, Zhang, & Wang, 2010 ), to name a few. 

In the last decade, the concept of Complex Network (CN) has 
been employed in the field of shape analysis, as described in the 
work of Backes, Casanova, and Bruno (2009) . In this approach, a 
shape is represented by a CN in which each pixel corresponds to a 
vertex, and the Euclidean distance, along with a threshold, is used 
to define edges between pairs of vertices. Over one such CN, it 
becomes possible to use several methods and metrics from Graph 
Theory in order to characterize the shapes. In the work of Backes 
et al., the authors introduce a descriptor based on vertex degree; 
they use the max and the average mean degree as global features. 
This descriptor, though simple, presented promising results, cor- 
roborating that CN has potential in pattern recognition. 

In the present work, we proposed a new shape descriptor based 
on CNs and geometric concepts. Our method can be applied af- 
ter the image segmentation step; so, given the shape boundary 
pixels, we build a CN. We explore the fact that the use of global 
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measures limits the discriminating potential of CN-based descrip- 
tors. In a different course of action, we contribute by introducing 
a shape characterization that takes into account the angle between 
the connected vertices (pixels), a local feature that brings a finer 
discrimination to the descriptor. We also describe how to auto- 
matically set the threshold used to define the edges, which pre- 
sented superior results compared to the use of constant threshold 
values. As shown in the experiments, the proposed methodology 
improved the classification results in most of the cases, including 
with variations on rotation, scale, noise, and contour degradation. 
We compared our results to traditional contour and region-based 
descriptors, and to other CN descriptors. 

The paper is organized as follows. Section 2 presents an 
overview of the CN theory and its application for shape repre- 
sentation. The proposed approach is defined in Section 3 , where 
our techniques for angular analysis and automatic threshold selec- 
tion are presented. Section 4 details all the experimental protocol, 
the datasets and the classification results achieved in each exper- 
iment, along with the comparison to other descriptors. Finally, in 
Section 6 an overview of the angular descriptors and its results are 
presented. 
2. Complex network theory 

CN has emerged in the past decade combining concepts from 
graph theory and statistics ( Costa, Rodrigues, Travieso, & Vil- 
las Boas, 2007 ). It is a research field that heavily relies on math- 
ematics, computer science, and physics, leading to a large range of 
applications ( Costa et al., 2011 ). The popularity of CNs can be ex- 
plained by its ease in modeling many kinds of problems and nat- 
ural phenomena. As CNs are represented by graphs, every entity- 
relationship problem can be straightly modeled, such as social in- 
teraction, physics simulation, or image representation. 

We can cite three main developments that have contributed 
for the CN research ( Costa et al., 2007 ): (i) investigation of the 
random-network model ( Erdos & Rényi, 1959; 1960 ); (ii) inves- 
tigation of small-world networks ( Watts & Strogatz, 1998 ); and 
(iii) investigation of scale-free networks ( Barabási & Albert, 1999 ). 
Moreover, works from various fields of science have focused on 
the statistical analysis of such networks ( Boccaletti, Latora, Moreno, 
Chavez, & Hwang, 20 06; Costa et al., 20 07; Dorogovtsev & Mendes, 
2013; Newman, 2003 ). 

Most of the works using CNs have two main steps: (i) model 
the problem as a network; and (ii) extract topological measures to 
characterize its structure. These features can be useful for discrimi- 
nating different categories/classes, and, therefore, for creating tech- 
niques for pattern recognition. In this context, current works focus 
on exploring concise strategies for representing the CN according 
to the problem at hand. 

Although the field of CNs is gaining a lot of attention from 
many areas, such as physics and biology, it is still an under- 
explored field in computer vision. Only a few works can be found 
in the literature which uses CNs as a supporting method. In com- 
puter vision, examples include texture analysis ( Chalumeau, Meri- 
audeau, Laligant, & Costa, 2008; Gonçalves, Machado, & Bruno, 
2015; Scabini, Gonçalves, & Castro Jr, 2015 ), nanoparticle agglomer- 
ation analysis ( Machado et al., 2017 ), face recognition ( Gonçalves, 
de Jonathan de Andrade Silva, & Bruno, 2010 ), and shape analysis 
( Backes et al., 2009 ); this last work presented good results, but its 
simplicity renders for limited discrimination, as we demonstrate in 
our comparative experiments. 
2.1. Complex network representation and measures 

As previously discussed, graphs are used to represent CNs. 
Specifically, in our work, we use undirected weighted graphs. 

In this representation, a graph G = { V, E} accounts for V = 
{ v 1 , . . . , v n } , a set of n vertices; E = { e = (v i , v j ) | v i ∈ V and v j ∈ V } , 
a set of edges that connects pairs of vertices v i and v j ; and values 
e v i , v j = weight(v i , v j ) representing the edge weight of the connec- 
tion between two vertices v i and v j . 

There is a large number of measures that can be extracted from 
a CN, as presented in the work of Costa et al. (2007) , in which the 
authors review different classes of measures. A simple but impor- 
tant one is the degree distribution. The degree of a vertex v i is 
the number of its connections, which describes its interplay with 
neighbor vertices: 
k (v i ) = ∑ 

v j 
{

1 , if e v i , v j ∈ E 
0 , otherwise (1) 

Most works use the degree distribution for the characterization 
of CNs, using measures such as the max and the average degree. 
However, although the degree is an important measure, using sim- 
ple statistical measures from its distribution can limit the task of 
describing the properties of a network. For a more thorough anal- 
ysis, other measures that consider the local properties of the ver- 
tices have the potential for a finer description. 
2.2. Shapes as complex networks 

The technique to model a shape as a CN was proposed in 
the work of Backes et al. (2009) . Given a set of n c pixels belong- 
ing to the contour of a shape in an image, a network G = { V, E} 
is modeled so that each pixel is mapped to a vertex of the set 
V = { v 1 , . . . , v n c } . The next step is the definition of the set of edges 
E . We connect each pair of vertices to define edges whose weights 
come from the Euclidean distance considering the position of the 
pixels. The distance between two pixels i and j represented by ver- 
tices v i and v j is given by: 
d(v i , v j ) = √ 

(x i − x j ) 2 + (y i − y j ) 2 (2) 
Next, we normalize the weights as follows: 

e v i , v j = d(v i , v j ) 
d max (3) 

where d max is the largest distance between all pixels. This normal- 
ization is performed so that the connections’ weights are kept in 
the interval [0, 1]. It also keeps the edge’s weights invariant to the 
scale of the shape. 

At this point, the topology is regular – all the vertices have 
the same number of connections; a selective procedure is neces- 
sary, keeping only the edges that are more relevant. A simple and 
widely used approach is to remove edges according to a thresh- 
old. Given a threshold t , a new network G t = { V, E t } is obtained by 
discarding edges that have a weight greater than t , as follows: 
E t = { (v i , v j ) | e v i , v j ≤ t, v i ∈ V, v j ∈ V } (4) 

The resulting G t network fits into the Watts and Strogatz small- 
world model ( Watts & Strogatz, 1998 ), and can be used as a rep- 
resentation of a given image’s shape. Fig. 1 shows an example of a 
shape network after the threshold operation. 
2.3. Dynamic analysis of complex networks 

The threshold value t directly affects the network topology re- 
sulting in dense or sparse networks, as observed in Fig. 2 . More- 
over, a CN cannot be fully characterized without considering the 
interplay between structural and dynamic aspects ( Costa et al., 
2007 ). In our methodology, we access the dynamics of the network 
by using a set of thresholds T = { t 1 , t 2 , . . . , t n } . This analysis covers 
the network evolution since its creation (low thresholds) to its sta- 
bilization (high thresholds). The result is a shape represented by a 



364 L.F.S. Scabini et al. / Expert Systems With Applications 89 (2017) 362–373 

Fig. 1. A Watts and Strogatz small-world network built from a fish shape. 
set of CNs, { G t 1 , G t 2 , . . . , G t n } . The combination of the measures ex- 
tracted from all the t networks results in a robust feature vector 
that characterizes the shape dynamics in terms of the neighbor- 
hood interplay of its pixels. 
3. Proposed approach: angular descriptors of complex 
networks 

This section presents our proposed methodology, which is 
based on the extraction of features from the topological transfor- 
mations presented in Section 2 . Our motivation was to improve the 
shape characterization by using local geometric measures instead 
of the global degree analysis observed in the work of Backes et al. 
(2009) , discussed in the previous sections. The core of our method 
is to use the geometrical angles defined by the vertices in the 
shape contour, three at a time. We refer to the sets of features 
computed from the CN angles as Angular Descriptors of Complex 
Networks (ADCN). 

In order to extract angular descriptors from CNs, the following 
steps are necessary. Given a network G t , transformed by a thresh- 
old t , each vertex v i is analyzed and the angle θ is computed be- 
tween its incident edges with relation to two of its neighboring 
vertices v j and v k – see Fig. 3 : 
θ

v j , v k 
v i = ( arctan (v i − v j ) − arctan (v i − v k )) ∗ 180 

π
(5) 

Fig. 3 illustrates this approach for a vertex with three adjacent 
vertices. It is important to notice that we have normalized the 
angle interval into [0, 180] taking the inner angle between the 
edges ( θ v j , v k 

v i = min (θ v j , v k 
v i , 360 − θ

v j , v k 
v i ) ). An important issue is that 

Fig. 3. A set of angles [ θ v j , v h 
v i , θ v h , v k 

v i , θ v k , v j 
v i ] computed for a vertex v i using its adja- 

cent vertices v j , v k and v h . 
the order of edges changes the resulting θ ; therefore, we use a 
specific ordering of edges as part of the method, considering the 
edges with higher weight first. This process is discussed in depth 
in Section 3.2 . 

After calculating the angles for all the vertices of the network 
G t , we compute a histogram φt of the frequency of the angles: 
φt = [h (0 ◦) , h (1 ◦) , h (2 ◦) , . . . , h (180 ◦) 

∑ 180 
k =0 h (k ) 

]
(6) 

We normalize the histogram into a probability density function 
by dividing each element by the sum of its occurrences. This en- 
sures invariance to linear transformations that might increase or 
decrease the number of occurrences. The histogram size was de- 
fined according to the probability of occurrence of each angle; the 
experiments demonstrated that each angle in the interval [0, 180] 
has a significant frequency. 

Intuitively, the angle is a quite descriptive characteristic when 
it comes to shapes; in this aspect, the angular histogram is able to 
detect the corners, the abrupt changes, and the overall perimeter 
of a given shape. These properties are illustrated in Fig. 4 , which 
compares the angular frequency of an airplane and of a leaf. As 
the leaf is almost circular, the occurrence of low angles is smaller 
if compared to the airplane, which has many sharp curves. 
3.1. Feature vector 

Using the angular histograms φt obtained with different t val- 
ues, it is possible to construct a feature vector to characterize a 
given shape. First, it is important to notice that the use of the 
entire histograms results in a feature vector with a dimensional- 
ity that is too high; one single histogram has 181 bins, hence, the 
feature vector size would be n ∗181, which is impracticable. In the 
stead, we summarize the histograms by using statistical measures 
Mean, Standard deviation, Energy, Entropy, Contrast, and Homo- 
geneity, see Table 1 . 

We have analyzed the combination of each measure, and also 
their individual performance; the combination of all the 6 mea- 
sures presented the best performance. To define the final fea- 
ture vector ϕ, we considered the dynamic analysis described in 

(a) t1 (b) t2 (c) t3

Fig. 2. Shape-network evolution through different thresholds t 1 < t 2 < t 3 . 
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Fig. 4. Angular frequency extracted from shapes of two different classes. The network used for angular extraction was built with t = 0 . 5 . (a) Airplane samples. (b) Leaf 
samples. 
Section 2.3 , i.e., we concatenated the 6 statistical measures ex- 
tracted from networks with different thresholds t , as follows: 
ϕ = [ µt 1 , σ t 1 , e t 1 , ϵt 1 , C t 1 , H t 1 , . . . , µt n , σ t n , e t n , ϵt n , C t n , H t n ] (7) 

The entire process is illustrated in Fig. 5 . First, the boundary 
pixels are obtained from the image, and then the CNs G t are mod- 
eled for a set of thresholds { t 1 , . . . , t n } . Each network is evaluated, 

providing a φt angle histogram, and the feature vector ϕ is ob- 
tained by the concatenation of its statistical measures. 

Although the feature vector is composed of statistical measures, 
it is straight to notice that each individual vertex contributes to the 
process. For example, a vertex with a high degree will provide ex- 
tensive information on its own; this is because the set of its inci- 
dent edges will provide a broad set of angles. Such vertices are lo- 
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Table 1 
Equations of the statistical summarizations used to compose the feature vector. 

Mean Standard deviation Energy 
µt = 180 ∑ 

i =0 φt (i ) ∗ i σ t = √ 
180 ∑ 
i =0 (i 2 φt (i )) − µ2 e t = 180 ∑ 

i =0 φt (i ) 2 
Entropy Contrast Homogeneity 
ϵt = − 180 ∑ 

i =0 φt (i ) ∗ log (φt (i )) C t = 180 ∑ 
i =0 φt (i ) ∗ i 2 H t = 180 ∑ 

i =0 φt (i ) 
i 

Fig. 5. Steps to the extraction of angular descriptors from a shape image. (a) Con- 
tour pixels extraction. (b) CNs G t for each threshold value. (c) Angular histogram of 
each CN. (d) Statistical measures computed from the angular histogram of each CN 
concatenated to compose the feature vector ϕ. 
cated in regions with abrupt changes in the boundary of the shape, 
where rich information can be extracted for characterization. 
3.2. Rotation and scale invariance 

Rotation and scale invariance are essential in shape analysis 
since these transformations are very common in any application. 
To analyze the invariance of our approach, there are two aspects 
to be considered: (i) the network’s topology; and (ii) the angu- 
lar histogram (distribution). For both of these aspects, the nor- 
malization of the edges’ weights ( Section 2.2 ) plays an important 
role. As we use the distance between pixels and their coordinates 
to connect and define edges, rotation transformations have no in- 
fluence on the network’s topology. To analyze the network scale 
invariance, it is necessary to consider that images with different 
sizes, consequently, do not have the same number of contour pix- 
els. Therefore, according to Section 2.1 , two networks G 1 = { V 1 , E 1 } 
and G 2 = { V 2 , E 2 } constructed with images of different sizes do not 
satisfy to | V 1 | = | V 2 | ; actually, they define networks with differ- 
ent number of vertices. However, since we consider the distribu- 
tion of the angles and not their cardinality, it does not matter at 
which scale we are, for any given t the distribution is similar, as 
well as its statistical descriptors. We demonstrate this property in 
Fig. 6 , which shows the angular histogram of the same shape, origi- 
nally with size 128x128 pixels, after 4 scale operations. The similar- 
ity of the histograms is corroborated in Table 2 using the distance 
between them. The distance is computed by 1 

2 ∑ | φ1 (i ) − φ2 (i ) | , 

Table 2 
Histogram distance to the original shape considering the histograms of four differ- 
ent scales; computations for two threshold values. 

+25% +50% +75% +100% 
t = 0 . 33 0.042 0.052 0.061 0.067 
t = 0 . 66 0.053 0.078 0.088 0.098 

which means the average distance between the positions of the 
histograms, ranging from 0 to 180. 

Fig. 6 and Table 2 are emphatic in demonstrating scale invari- 
ance; for the same threshold value, the highest histogram distance 
is of 0.098, where values can reach up to 1. In Section 4.3 , we go 
further into this discussion with experimental results. 
3.3. Automatic threshold selection 

One of the limitations faced in previous CN methods is the 
number of parameters needed to build the threshold set T , see 
Section 2.3 . As previously discussed, this set is composed by an ini- 
tial threshold t 1 , a final threshold t n and a set of thresholds in the 
range [ t 1 , t n ]. In previous works, the authors evaluated three pa- 
rameters: the initial and final thresholds, and the increment fac- 
tor. In the work of Backes et al. (2009) , they empirically defined 
t 1 = 0 . 025 , t n = 0 . 95 and an increment factor of 0.075. However, 
manually defining a fixed threshold set is a cumbersome task that 
depends on trial and error. 

Instead, we propose an approach that eliminates the task of 
choosing threshold values for each dataset, focusing on an auto- 
mated method. It consists in modeling a Gaussian distribution for 
the edges of the training images. The first step of the method is 
to build the CN, G I = { V I , E I } , of each image I ∈ P in a training set P 
with | P | images, obtaining the edges’ weights of all the | P | ∗| E | con- 
nections – no threshold cutting yet. Once the edges’ weights are 
known, it is possible to estimate their mean and standard devia- 
tion for the training set P as follows: 
µ = 1 

| P | ∗ | E| ∑ 
I∈ P 

∑ 
(v i , v j ) ∈ E I weight(v i , v j ) (8) 

σ = √ 
1 

| P | ∗ | E| ∑ 
I∈ P 

∑ 
(v i , v j ) ∈ E I (weight(v i , v j ) − µ) 2 (9) 

Using these measures, it is possible to define a range that en- 
sures a minimum coverage of the edges’ weights distribution ac- 
cording to the three-sigma rule, as follows: 

t 1 = µ − ασ
t n = µ + ασ

(10) 
where α controls the covering rate of the distribution; for example, 
for α = 1 the coverage is approximately 68.27% of the distribution, 
while α = 3 covers approximately 99.73%. 

With this approach, the threshold range is defined according 
to the type of shapes being analyzed, automatically adjusting for 
each set of images. Moreover, it reduces the number of parameters 
of the proposed approach to just the number of thresholds to be 
used, that is, the number of values between the interval [ t 1 , t n ], 
which means that the user just needs to set the parameter n . 
3.4. Complexity and processing time 

In order to evaluate the use of angular descriptors in real-time 
applications, we performed a complexity and processing time anal- 
ysis. Consider the number of contour pixels n c of a given shape- 
image with n s = w ∗ h pixels and a fully-connected network (i.e., 
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Fig. 6. Angular histogram for 4 scales of the same shape and for two threshold values. 
threshold t = 1 , which is the “worst case”). First, to find and ex- 
tract the contour pixels it is necessary to verify each pixel of the 
image, which results in a cost of O ( n s ). To model the CN, the cost is 
O (n 2 c ) , i.e. the cost for evaluating the distance between each pair 
of contour pixels and connect them. To remove connections and 
perform the angle calculations, we have a cost of O (n 2 c log n c ) to 
visit and sort each edge going through each vertex (we used prior- 
ity queues to compose the edges set of each vertex). Therefore, the 
total complexity becomes O (n s + 2 n 2 c log n c ) , and by removing the 
lowest order terms, we get O (n s + n 2 c log n c ) . 

To estimate the processing time of the proposed approach, we 
used an AMD FX(tm)-4300 Quad-Core processor with 3.80 GHz of 
clock and 4GB of RAM memory, in a 64-bit operational system. 
The average mean time of 10 executions to extract the angular 
descriptors for a shape with 435 contour pixels in an image with 
114 × 114 pixels (sample from the Generic Shapes dataset) was 0.08 
seconds, which implies that ADCN has competitive running time 
for real-time applications. 
4. Results and discussion 

For experimentation, we used the same datasets and experi- 
mental protocol used by Backes et al. (2009) , which consists of a 
classification step using Linear Discriminant Analysis (LDA) and of 
a Leave-one-out cross-validation. We present the parameter anal- 
ysis of our approach, and also a comparison with other shape 
descriptors including the two original CN descriptors. Moreover, 
an analysis of noise and degradation robustness is performed in 
Sections 5.1 and 5.2 . 
4.1. Experimental design 
4.1.1. Datasets 

The analysis performed in this section includes classification re- 
sults obtained by using the following datasets: 
• Generic Shapes: also known as 99 Shapes, this dataset 

( Sebastian, Klein, & Kimia, 2004; Sharvit, Chan, Tek, & Kimia, 
1998 ) is widely used in the literature; it is composed of 9 

Fig. 7. Samples from the Generic shapes dataset; each row represents 4 samples 
from the same class. 

classes with 11 samples each, including transformations such 
as overlap, occlusion, missing parts and variations in structure; 
the full dataset has 99 images of varied sizes; samples from the 
Generic shapes dataset can be observed in Fig. 7 . 

• Fish: this is a large dataset with 11,0 0 0 images, composed by 
contours of fish species ( Backes et al., 2009 ); it has a total of 
1100 classes, with 10 samples each; its Samples present 10 dif- 
ferent transformations, that is 5 rotations and 5 scales; some 
classes and samples are illustrated in Fig. 8 . 

• Leaves: this dataset is composed of natural leaves extracted 
from different plant species grouped into 30 classes, each one 
with 20 samples of sizes 256 × 256 ( Backes et al., 2009 ); this is 
a very challenging dataset due to a high between-class similar- 
ity and due to within-class differences; moreover, overlaps and 
leaf deformation can occur in samples of the same class; the 
dataset is illustrated in Fig. 9 . 
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Fig. 8. Samples from the Fish dataset; each row represents 4 samples from the 
same class. 

Fig. 9. Samples from the Leaves dataset; each row represents 4 samples from the 
same class. 
• Rotated Leaves: for rotation invariance analysis, each sample of 

the original Leaves dataset was rotated according to the follow- 
ing angles: 7 °, 35 °, 104 °, 132 °, 201 ° and 298 °; the new dataset 
consists of 30 classes with 120 samples each; Fig. 10 (a) illus- 
trates the rotations that define the dataset. 

• Scaled Leaves: for scale invariance analysis, a new dataset was 
obtained by scaling each sample of the original Leaves dataset 
by 25%, 50%, 75% and 100%, as seen in Fig. 10 (b); the new 
dataset is composed of 30 classes of 80 samples each. 
These datasets have different properties, such as generic arti- 

ficial shapes (Generic shapes) and real natural shapes (Fish and 
Leaves). This combination of datasets suits the analysis of the de- 
scriptors’ robustness against many real issues and, also, their ap- 
plication in real problems. 
4.1.2. Linear discriminant analysis 

To evaluate the ADCN and other methods, we perform a classi- 
fication task over its descriptors. We use the LDA classifier ( Ripley, 

Fig. 10. Rotation (a) and scale (b) performed on a sample of the original Leaves 
dataset. 
1996 ), a well-known supervised method to estimate a linear sub- 
space with good discriminating properties. The idea is to follow the 
same experimental protocol of the work of Backes et al. (2009) so 
to perform a fair comparison with the CN degree descriptors. 
The LDA consists of finding a projection of the features where 
the between-class variance is larger compared to the within-class 
variance. Nearest neighbor classification is performed to predict 
new samples. Using leave-one-out cross-validation, we measure 
the performance using the accuracy rate, that is the number of cor- 
rectly classified samples predicted by LDA. 
4.2. Parameter analysis 

This section presents an analysis of the automatic threshold se- 
lection considering the number of thresholds n . 
4.2.1. Threshold range 

Considering the dynamic analysis of CN-based descriptors, as 
previously discussed in Section 2.3 , it is necessary to define a set of 
thresholds T = { t 1 , . . . , t n } to obtain CNs { G t 1 , . . . , G t n } , which pro- 
vide measures to compose the feature vector. 

To define the set T , first, it is necessary to define the initial and 
the final thresholds ( t 1 and t n ). Instead of manually defining val- 
ues, as was done in previous works, we used automatically-defined 
thresholds, as defined in Section 3.3 . Therefore, only the number of 
thresholds n must be defined, so that the set T can be divided into 
n equidistant values ranging from t 1 to t n . Accordingly, we evalu- 
ated Eq. (10) by varying α from 1 to 3 increasing it by 0.2. Fig. 11 
(a) shows the accuracy rate in each dataset as we increase the 
value of α. From the figure, one can see that for α = 1 . 4 , we get 
the best accuracy rate. In Fig. 11 (b), we use this value of α varying 
the value of n , which we discuss in Section 4.2.2 . 

It was observed that a covering range using α between 1 and 
1.4 presents the best results, except for the Fish dataset, which was 
not significantly sensitive to α. With α = 1 . 4 , the resulting thresh- 
old ranges for each dataset are: [0.1059, 0.7645] (Leaves), [0.1118, 
0.7445] (Generic Shapes), and [0.0693, 0.7063] (Fish). 
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Fig. 11. Accuracy rate on each dataset; (a) by varying α (using n = 5 ); and (b) by varying n (using α = 1 . 4 ). 
To achieve a threshold range close to the fixed range used by 

Backes et al., it would be necessary to use an α value close to 2.4, 
which achieves an inferior performance, as the accuracy rates show 
in Fig. 11 (a). Therefore, we can argue that applying low or high val- 
ues like 0.025 and 0.955, as was done in the work of Backes et al., 
may include CNs with no relevant information (sparse or regular 
topologies). 
4.2.2. Number of thresholds 

To analyze the number of thresholds, we evaluated n ranging 
from 2 to 14 for α = 1 . 4 . The results can be observed in Fig. 11 (b), 
which presents the accuracy rates for each dataset. We stopped 
the analysis at n = 14 due to the drop in the accuracy rate of the 
Generic shapes dataset and due to the stable accuracy of the Fish 
and Leaves datasets. The best results are achieved with n = 10 and 
n = 14 in the Leaves dataset (89.67%); n = 5 in the Generic shapes 
dataset (100%); and n = 12 in the Fish dataset (98.79%). In order 
to find a balance between keeping a significant number of features 
and a good performance, and considering the number of features 
of other descriptors, we defined n = 7 as the best parameter, con- 
sidering that the results are satisfactory for each dataset and the 
number of features is 42. We believe that it can be generally used 
and that it will present satisfactory results for a large range of im- 
age domains. 
4.3. Comparison with other shape descriptors 

To compare our approach with the state of the art, we eval- 
uated the following shape descriptors considering their proposed 
implementation and parameters: 
• CN degree and joint degree descriptors ( Backes et al., 2009 ): the 

degree descriptors concatenate the max and the average of the 
degree distribution of the CNs to compose the feature vector; 
the joint degree descriptors consist of the distribution of mea- 
sures entropy, energy, and average computed from the joint de- 
gree of the network. We used the same parameters defined by 
the authors in their original work, that is, a fixed threshold set 
ranging from T ini = 0 . 025 incremented at a regular interval of 
0.075 until reaching a final threshold T Q = 0 . 95 . 

• Fourier descriptors ( Osowski et al., 2002 ): this descriptor is 
composed of a feature vector with the 20 most significant co- 
efficients of the Fourier transform of the contour. 

• Zernike moments ( Zhenjiang, 20 0 0 ): this approach represents 
the shape by a feature vector containing 20 moments (the or- 
der ranging from n = 0 to n = 7 ) corresponding to the most sig- 
nificant magnitudes of a set of orthogonal complex moments of 
the image. 

• Curvature descriptors ( Wu & Wang, 1993 ): the shape is rep- 
resented as a curve, where its maximum and minimum local 

Table 3 
Number of features used by each descriptor. 

Descriptor n no. of features 
ADCN 5 30 
ADCN 7 42 
ADCN 10 60 
CN degree 26 
CN joint degree 39 
Fourier 20 
Zernike 20 
Curvature 25 
Multiscale fractal dimension 50 

Table 4 
Classification results achieved by each descriptor in the Generic shapes dataset. 

Descriptor Qty correctly classified Accuracy rate (%) 
ADCN ( n = 7 ) 98 98.99 
ADCN ( n = 5 ) 99 100 
CN degree 95 95.96 
CN joint degree 86 86.87 
Fourier 83 83.84 
Zernike 91 91.92 
Curvature 76 76.77 
Multiscale fractal dimension 87 87.88 

points correspond to the direction changes in the shape con- 
tour. 

• Multiscale fractal dimension ( Plotze et al., 2005; Torres et al., 
2004 ): using concepts from the fractal theory, the shape is rep- 
resented as a curve that describes how the contour complexity 
changes as the scale changes. To compose the feature vector, it 
considers the 50 most meaningful points of the curve. 
Table 3 presents the number of features used by each descrip- 

tor. Our method, the Angular Descriptors of Complex Networks 
(ADCN), uses 6 ∗n features, which correspond to the concatenation 
of the 6 distribution measures, as described in Table 1 , extracted 
for each of the n thresholds. In the following results, we show the 
accuracy rates achieved using the standard parameter ( n = 7 ) and 
also the value n that provides the best results. 
4.3.1. Generic shapes dataset 

First, we evaluated the classification results of each descriptor 
in the Generic shapes dataset. As previously discussed, this dataset 
presents many kinds of transformations, such as overlap, variations 
in structure, and missing parts. Despite the challenges, the pro- 
posed method presents promising results. Table 4 shows the results 
achieved by each descriptor. The ADCN presents the best perfor- 
mance, with 98.99% against 95.96% of the CN degree descriptors. 
It is also important to note that the result of 100% achieved with 
n = 5 is the highest so far reported in the literature for this spe- 
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Table 5 
Classification results achieved by each descriptor in the Fish dataset. 

Descriptor Qty correctly classified Accuracy rate (%) 
ADCN ( n = 7 ) 10,831 98.46 
ADCN ( n = 12 ) 10,867 98.79 
CN degree 10,932 99.38 
CN joint degree 10,428 94.80 
Fourier 10,897 99.07 
Zernike 1345 12.23 
Curvature 10,730 97.55 
Multiscale fractal dimension 4105 37.32 

Table 6 
Accuracy rate of each descriptor on the leaves dataset. 

Type of experiment Descriptor Qty correctly 
classified Accuracy 

rate (%) 
Original 600 images ADCN ( n = 7 ) 534 88.83 

ADCN ( n = 10 ) 538 89.67 
CN degree 502 83.67 
CN joint degree 461 76.83 
Fourier 450 75.00 
Zernike 408 68.00 
Curvature 450 75.00 
MS fractal dimension 438 73.00 

Rotated 3600 images ADCN ( n = 7 ) 3188 88.56 
ADCN ( n = 10 ) 3239 89.97 
CN degree 3020 83.89 
CN joint degree 2992 78.22 
Fourier 2755 76.53 
Zernike 2517 69.92 
Curvature 2831 78.64 
MS fractal dimension 2455 68.19 

Scaled 2400 images ADCN ( n = 7 ) 2145 89.38 
ADCN ( n = 10 ) 2161 90.04 
CN degree 2019 84.12 
CN joint degree 2007 79.45 
Fourier 1958 81.58 
Zernike 1309 54.54 
Curvature 1920 80.00 
MS fractal dimension 1784 74.33 

cific dataset. Considering these results, the promising performance 
of the angular descriptors is evident, overcoming all the other de- 
scriptors. This implies that it has the potential to handle deforma- 
tions in the shapes and to generalize in cases of classes with low 
within-class similarity. 
4.3.2. Fish dataset 

The experimentation over the Fish dataset allowed for the eval- 
uation of performance in a large scale. This dataset has 11,0 0 0 im- 
ages and 1100 classes. Table 5 shows the accuracy rate of each de- 
scriptor. The ADCN reached 98.79%, against 99.38% achieved by the 
CN degree descriptors, and 99.07% of the Fourier descriptors. Al- 
though the previous method surpassed our methodology for this 
specific case, our results are still competitively effective, presenting 
a maximum difference of only 0.59% for the accuracy rate. On the 
other hand, the methods based on Zernike moments and on Mul- 
tiscale fractal dimension drastically lost performance compared to 
their results over the Generic shapes dataset. 
4.3.3. Leaves dataset 

Finally, we experiment on the Leaves dataset and its variations. 
Table 6 presents the accuracy rate and the number of correctly 
classified images for the original, scaled, and rotated versions of 
this dataset. In the original dataset, the ADCN reached 89.67% of 
accuracy rate using n = 10 , and 88.83% with n = 7 , followed by the 
CN degree descriptors with 83.67%. The other descriptors achieved 
results below 75%. This emphasizes the challenges faced in the 
classification of leaves, which requires more advanced techniques. 

Table 7 
The accuracy rate of each descriptor for 600 images of the Leaves dataset at each 
noise level. For this experiment, we used n = 7 as the parameter to the proposed 
method ADCN. 

Descriptor Accuracy rate (%) 
Level 1 Level 2 Level 3 Level 4 

ADCN 83.33 81.67 81.00 80.83 
CN degree 83.00 81.83 80.50 80.12 
CN joint degree 77.67 76.17 75.17 75.83 
Fourier 69.17 64.00 62.83 57.67 
Zernike 66.50 67.00 65.67 66.50 
Curvature 75.33 74.83 72.00 71.33 
MS fractal dimension 64.00 57.50 56.67 52.17 

The results achieved in the rotated version of the Leaves dataset 
is an evidence that the angular descriptors method is invariant to 
rotations. The proposed method maintains its performance, pro- 
viding 89.97% with n = 10 , and 88.56% with n = 7 , against 83.89% 
from the CN degree descriptors. In general, the descriptors main- 
tained their performance considering the results achieved in the 
original dataset, except for the MS fractal dimension descriptor 
that had its accuracy rate decreased from 73% to 68.19%. 

The results over the Fish dataset also indicate robustness to 
scale, as previously discussed in Section 3.2 . The ADCN reached 
90.04% of accuracy rate with n = 10 and 89.38% with n = 7 , over- 
coming the other descriptors. The CN degree descriptors reached 
84.12%, followed by the Fourier descriptors with 81.58%. The mo- 
ments of Zernike is not as tolerant to scale changes as other de- 
scriptors, and its accuracy rate has remarkably dropped. 
5. Noise and degradation aspects 

We also evaluated the descriptors performance in other aspects 
such as noise and degradation, considering that in real applications 
the shape can be affected by these kinds of deformations. In this 
context, to complement the analysis of the proposed descriptors, 
we also perform experiments adding 4 noise levels and 2 types of 
degradations to the images. Fig. 12 shows samples of the noise and 
degradation used in the experiments. 
5.1. Robustness against noise 

In this section, we present classification results in noisy images 
in order to complement the analysis of the descriptors’ robustness, 
evaluating their tolerance to noise. To perform the experiment, the 
same dataset used in the work of Backes et al. was used. It is com- 
posed by noise transformations applied to the original samples of 
the Leaves dataset. The noise is uniformly generated at the inter- 
val [ −r, . . . , r] , where r is the intensity level of the noise, and then 
added to the original signal. The noise pattern is generated for 
both the x and y coordinates of the contour. Each noise level re- 
sults in a dataset with 600 images. The results achieved by the 
descriptors for each noise level are presented in Table 7 . 

As expected, the ADCN lost performance in comparison to the 
results achieved in the original dataset. This behavior was expected 
due to the noise influence in the angle computations, which is the 
main property of the angular descriptors. Nevertheless, the pro- 
posed approach presents superior or equivalent results if compared 
with other descriptors; it presented its worst performance at noise 
level 2, but still, it was superior to the competitors. 

Another kind of problem is the existence of noise that is not 
part of the contour pixels. We want to raise some points concern- 
ing this issue related to our method. In principle, this noise will 
contribute to the weight of the edges, as we consider the largest 
Euclidean distance between the contour pixels and its normaliza- 
tion. Thus, the weight of the edges between the contour pixels 



L.F.S. Scabini et al. / Expert Systems With Applications 89 (2017) 362–373 371 

Fig. 12. Samples of (a) 4 noise levels; and (b) 4 degradations (2 continuous and 2 random). 

Fig. 13. Behavior of shape descriptors in the Leaves dataset with several levels of 
continuous degradation. 
and the noise tends to be higher (close to 1). However, consider- 
ing our proposal of automatically defining the threshold, we obtain 
the distribution of the edges’ weights from all the training images; 
that is, connections between contour pixels will occur much more 
often than to noise pixels. We then select threshold values around 
the mean based on the Gaussian parameters of the distribution. It 
means that we remove extreme values (tails of the distribution), 
which then imply in the removal of high weight connections, like 
those related to noise that is not part of the contour. 
5.2. Robustness against degradation 

The proposed descriptor is also evaluated in a dataset with 
degradation on the shapes. For this analysis, several levels of 
degradation are applied to the original samples of the Leaves 
dataset. First, we evaluate long continuous discontinuities found in 
the shape’s contour. We measure the descriptor behavior as the 
level of degradation is increased, applying 13 degradation levels 
(5%, 10%, ... , 65%). Fig. 13 shows the accuracy rate for each level 
of degradation applied to the Leaves dataset. 

We also evaluated random degradation, that is, short random 
discontinuities found in the shape’s contour. In this experiment, 
Fourier and Curvature descriptors cannot be evaluated because 
they do not work over segmented contours. The levels of random 

Fig. 14. Behavior of shape descriptors in the Leaves dataset with several levels of 
random degradation. 
degradation follow the same factor as those applied in the con- 
tinuous degradation (5%, 10%, ... , 65%). Fig. 14 shows the perfor- 
mance of each shape descriptor over the random degradations of 
the Leaves dataset. 

According to these results, it is valid to assume that the ADCN 
has great robustness against degradation levels. The curves pre- 
sented in the continuous and random experiments indicate that 
the proposed approach keeps its performance above the other de- 
scriptors for each evaluated level of degradation. The CN degree 
descriptors presented good performance in the random degrada- 
tion; on the other hand, it is not as tolerant as other descriptors 
in the continuous degradation, such as the MS fractal dimension 
and the Zernike moments. The Fourier and Curvature descriptors 
proved to be highly influenced by degradation, considerably losing 
accuracy rate. 

In the same image, degradation can often occur simultaneously 
with another type of noise. As previously discussed, the noise 
around the contour has a high influence in the angular calcula- 
tions, which results in performance loss. On the other hand, ex- 
periments demonstrated that our method is robust to some degra- 
dation types and levels, compared to other methods. With these 
findings, we believe that if both noise (around the contour) and 
degradation are present, the performance of the angular descrip- 
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tors will be mostly influenced by noise, achieving similar results 
as compared to those presented in our noise experiments. 
6. Conclusion 

We introduced a novel method to extract features to represent 
shapes found in digital images. Given an image shape, the method 
builds a CN over the boundaries of the shape – pixels over the 
boundaries correspond to vertices, and the distances among them 
define weighted edges according to a threshold; after the network 
is built, the next step is to compute the angles defined by the 
edges of the network; finally, the distribution of the angles is com- 
puted to create a histogram whose statistical measures are used 
to construct feature vectors named Angular Descriptors (ADCN). We 
demonstrated the efficacy of our method over a classification task 
carried out over five robust image datasets. The classification re- 
sults demonstrated the method to be superior to previous works 
based only on the vertex degree feature of the shapes’ CN, and, 
also, superior to methods based on Zernike moments, Multiscale 
Fractal dimension, and Fourier transform. We also demonstrated 
that the method is invariant to scale, and to rotation, and that it 
performs well even when image degradation occurs. 

With these results, the use of CNs proved to be a promising ap- 
proach for pattern recognition. We expect that future research is 
done to explore additional CN features in applications related to 
image retrieval, classification, and computer vision. A possible line 
of work is to use CNs for region-based shape analysis, considering 
all the pixels of the shapes for building the CNs. Moreover, as dis- 
cussed in our experiments, even with the competitive performance 
achieved on the noisy images, the ADCN accuracy dropped consid- 
erably compared to the original images. In this context, alterna- 
tives shall be investigated to improve the noise robustness of the 
method. This methodology can also be used to extract measures 
from sub-complex networks (i.e., subgraphs). Thus, one might find 
multiple shapes within a single CN through sub-complex network 
matching. 
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