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email: wesley.nunes@ufms.br

Bruno Brandoli Machado
Computer Departament – UFMS

79907-414, Ponta Porã, MS, Brasil
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Abstract—Pantanal is one of the most important biomes of
the world, with a large number of wild animal species, some
of them are in extinction. The automatic identification of
wild animals is extremely important for the estimation of the
species’ population within Pantanal. However, digital process-
ing techniques for the identification and tracking of species
have faced great challenges due to clumsy light and pose
conditions present in images taken in the wild. To overcome
such problems, we propose a methodology that, by combining
regular RGB images and thermal images, improves the identi-
fication of species even in images taken in rough circumstances.
We use the SLIC segmentation algorithm to identify the regions
of the images where animals are present; after that, we apply
convolutional neural networks to classify the identified regions
according to eight possible animal species. We experiment on
a real-world dataset composed of 1,600 images. Our results
showed an average gain between 6% and 10% when compared
to the method Fast R-CNN.

1. Introduction

Pantanal is one of the richest ecosystems in the world,
housing a large number of animals living in ecological
balance. This region is the world’s largest tropical wetland
with an area of approximately 138,183 km2. Junk et al.
[1] list 263 fish species, 96 reptile species, 40 amphibian
species, 390 bird species, and 130 mammal species. The
number of species diverges in several works, for example,
the number of bird species is usually given as something
between 600 and 700 species [2], although only 390 were
confirmed [1]. Because of its importance and ecological
diversity, Pantanal is considered by UNESCO as a World
Heritage Site, and as a Biosphere Reserve1.

As a result of unsustainable land uses, Pantanal is
constantly in danger of losing its biodiversity and as-
sociated natural habitats. Endangered species occur in

1. More details at http://whc.unesco.org/en/list/999.

the region, such as the giant armadillo (Priodontes max-
imus), marsh deer (Blastocerus dichotomus), giant anteater
(Myrmecophaga tridactyla), bush dog (Speothos venaticus),
among others. The major challenge for Pantanal is to balance
the growing demand for social and economic development
(e.g., cattle ranching, agriculture, tourism) with the conser-
vation of the biodiversity [3].

However, getting to know the biodiversity present in the
vast area of Pantanal comes to be a big challenge faced
by researchers working to protect species from extinction.
The identification of species in Pantanal is a laborious time-
consuming task due to the wetland environment and to the
eating habits of the animals, making it difficult to effectively
estimate the species and their densities by km2. To track and
monitor such animal population, researchers spend days in
Pantanal observing the species with the aid of technologies,
such as camera traps, and aerial images. The current identi-
fication process is extremely cumbersome, requiring special
training and the manual inspection of captured images and
videos.

In this paper, we propose a new approach to automat-
ically detect and identify the animal species of Pantanal
using convolutional neural networks (CNN). In contrast to
the other region-oriented CNN (R-CNN) proposals, here,
regions of interest are identified using the segmentation of
thermal and RGB images by means of the SLIC algorithm
[4]. Such regions are projected onto the network feature
map of the Fast R-CNN [5] network; after that, a maximum
pooling is performed to adjust the final size of the features
with the fully-connected layer. We use the deep neural
network VGGNet [6] architecture with 16 layers for the final
species identification. Our approach achieved better results
when compared with the original Fast R-CNN for 8 animals
species.

The rest of the paper is organized as follows. In Section
2, we review the related papers on automatic animal identi-
fication. In Section 3, we described the methods that we use
and compare. The proposed approach is detailed in Section
4. Section 5 presents experiments and results. Finally, the



conclusions and future directions are presented in Section
6.

2. Review of the Literature

Some approaches have been proposed to perform the
automatic identification of animal species [7], [8], [9]. Yu et
al [7] proposed an automated species identification for pic-
tures captured by remote-camera traps using Scale-invariant
feature transform (SIFT) and spatial pyramid matching.
They tested their method on a database with 18 species
from two different biomes (tropical rainforest and temperate
forest); they achieved an average accuracy of 82%. More
related to the present work, Chen et al. [8] and Gómez et al.
[9] proposed methods for animal species identification using
convolutional neural networks. Chen et al. [8] used an image
database with 20 species common in North America, reach-
ing an accuracy of only 38% with a CNN with 6 layers. On
the other hand, Gómez et al. [9] achieved 98% of accuracy
on an image database with 26 species from Tanzania. They
have tested more advanced CNN architectures, including
AlexNet, VGGNet, and GoogLeNet.

Similarly, our work also uses convolutional neural net-
works, but it is different in two main aspects. First, the
animal species are specific to the Pantanal, which is im-
portant to support ecologists and biologists on the animal
conservation of this specific biome. Second, we investigate
a new strategy to propose regions of interest in the task of
animal identification. Different from the first region-oriented
CNN architecture proposed by Girshick et al. [10], named
R-CNN, our approach uses a single CNN instead of multiple
CNNs for each candidate region in the image. In the second
version of the architecture proposed by Girshick et al. [5],
named Fast R-CNN, our approach is different in terms
of the region identification methodology; that is, it differs
in how the regions of interest (ROIs) are selected using
the segmentation algorithm SLIC, and in how the region
coordinates are mapped into the feature map; lastly, similar
to the Fast R-CNN, feature vectors are pooled into a fixed-
size feature vector and connected to the fully connected
layers.

3. Materials and Methods

3.1. VGGNet Architecture

Convolutional networks have recently received a great
deal of attention due to the success in world-class compe-
titions on large-scale image classification [11]. Simonyan
and Zisserman proposed the VGGNet architecture, which
brought a substantial improvement in the classification accu-
racy of images by increasing the depth of the network along
with a clever architecture in between layers [6]. Basically,
the input of VGGNet is a fixed-size 224×224 RGB image.
First, a pre-processing step is performed by subtracting the
mean RGB value, computed on the training set, from each
pixel. VGGNet passes each image through convolutional

layers, with small 3 × 3 filters in all layers, and the con-
volution stride and padding are fixed to 1 pixel. Along the
convolution process, the spatial pooling is carried out by five
max-pooling layers, performed over a 2 × 2 pixel window,
with stride 2. The architecture is then composed of three
fully-connected layers. In our work, we adapted the last
fully-connected layer to the number of classes used in the
experiments, in our case, 8 classes of wild animals. The last
layer of the VGGNet is the softmax gradient-log-normalizer
of the classes’ probability distribution. It is worth saying
that all the hidden layers are equipped with the rectification
(ReLU) non-linearity [12]. Thereby, as the spatial size of the
filter decreases along the convolutional layers, the number
of filters (depth) increases, starting from 64 in the first layer
and then increasing by a factor of 2 after each max-pooling
layer, until it reaches 512. In our paper, we used the VGGNet
with 16 layers; it was considered the best variation of the
proposed architecture in the original paper.

3.2. Fast R-CNN Architecture

Recently, the performance of object-detection techniques
has been boomed by the object-oriented methods [13]
and region-oriented convolutional neural networks (R-CNN)
[10], [14]. The basic idea of R-CNN is to propose multiple
candidate regions by using an auxiliary method to detect re-
gions, or objects, of interest. Next, it proceeds by computing
convolutional features from each region (using, for example,
VGGNet [6]); then, it obtains the classification rate for
each region using a binary linear Support Vector Machine.
In contrast, Fast R-CNN computes convolutional features
only once over the entire image. After that, for each region
of interest, features are directly extracted from the global
features map with a fixed-length vector over the region
of interest (ROI) pooling layer. Finally, feature vectors are
connected to fully-connected layers that finally branch into
two output layers: (i) classification and (ii) regression.

In more details, the first layer estimates a discrete
probability distribution for each region of interest, p =
(p0, ..., pC), over C + 1 categories, where p is computed
by a softmax probability over C + 1 outputs of the fully-
connected layer. The second layer obtains the bounding-box
regression, tc = (tcx, t

c
y, t

c
w, t

c
h), of an object belonging to a

certain class C. Therefore, each training region is associated
to a class u, as well as the bounding-box regression value v.
For training the network, each region has its loss function
defined as:

L(p, u, tu, v) = Lcls(p, u) + λ[u ≥ 1]Lloc(t
u, v) (1)

where Lcls(p, u) = −logpu is the log loss for the true class
u. Lloc is defined over a true bounding-box regression target
for class u, v = (vx, vy, vw, vh), and a predicted tuple tu =
(tux, t

u
y , t

u
w, t

u
h) for the class u.

3.3. SLIC Segmentation

The Simple Linear Iterative Clustering (SLIC) is
a clustering-based segmentation algorithm proposed by



Achanta et al. [4]. The method employs the k-means algo-
rithm for the generation of regions, called superpixels. The
parameter k is the desired number of superpixels in the im-
age. The SLIC algorithm is considered a fast approach with
linear runtime, and it yields the state-of-the-art adherence
to image boundaries, which outperforms existing methods
when used for image segmentation.

The first step of the SLIC algorithm is to convert the
original color image into the CIELAB color space. It uses
the color components L, a, b, and the spatial position x and
y as features of the pixels. For an image with N pixels,
the algorithm is initialized with even-distributed k cluster
centers, and each region composes an initial superpixel at a
grid interval of S =

√
N/k. Then, the distances between the

pixels and the clusters’ centers around a 2S×2S region are
calculated. Pixels are labeled to the cluster with the nearest
centroid. The centers are moved to the lowest gradient
value over a 3 × 3 pixel neighborhood, avoiding centroid
positioning in edge regions or having noisy pixels. The
distance is calculated by the Euclidean norm of the pixel
i to the kth cluster center, defined as follows:

dc(i, k) =
√

(Lk − Li)2 + (ak − ai)2 + (bk − bi)2 (2)

ds(i, k) =
√

(xk − xi)2 + (yk − yi)2 (3)

d =dc +m
ds
S

(4)

where dc is the color distance, ds is the spatial distance,
d is the distance between two pixels, S is the spacing
between cluster centers, and m is a factor parameter, which
is used to weight the proportion of color values and spatial
information in the distance measurement. SLIC also requires
a post-processing in order to group the connectivity of the
superpixels, forming a region of interest.

4. A New Proposed Approach for Wild Animal
Recognition

In this section, we detail our method, which is divided
into two parts: (1) identification of regions of interest using
the SLIC algorithm; and (2) feature map projection onto the
CNN for animal recognition. Following, we detail the two
parts of the methodology.

4.1. Region Detection

The proposed approach for region detection is based on
the SLIC segmentation algorithm, as described in Section
3.3. Basically, the idea is to group the pixels of the image
into regions that have similarity based on the body temper-
ature of the animals. Since the temperature of the animals
tends to be higher than the average ambient temperature,
the color attributes are emphasized according to the color
matrix given by a thermal camera.

Formally, an RGB image is defined as I ∈ <w×h, w
and h standing for the width and height of the images.

Its corresponding thermal image is defined as T ∈ <w×h.
For each cell of the matrix T (x, y), the thermal camera
provides the temperature in Celsius degrees (◦C). In order
to detect the animal in the region, we first calculate the
average temperature of the image Tempm, by means of the
equation:

Tempm =
1

w × h

w∑
x=1

h∑
y=1

T (x, y) (5)

We then apply the SLIC algorithm on the thermal image
T to obtain a set of superpixels S = {s1, s2, ..., sk}, where
k is the number of superpixels. Thereby, we calculate the
average temperature for each superpixel si by:

Tempsi =
1

Nsi

∑
(x,y)∈si

T (x, y) (6)

where Nsi is the number of pixels associated with the
superpixel si.

The proposed approach detects the regions where the
animals are present in the images by checking if a given
superpixel si has temperature higher than the average am-
bient temperature Tempm:

Tempsi + L > Tempm (7)

where L is a threshold used for separating the superpixels
belonging to the animal or to the background. Once we
have the target superpixels, we group the superpixels that
satisfy to Equation 7 in regions through the 8-connected
component labeling algorithm [15], [16]. As a result, we
have a set of regions R = {r1, r2, ..., rz}, where z is the
total number of clustered regions, and each region is defined
by ri = {s1 ∪ s2 ∪ . . .∪ sNri

}, where Nri is the number of
superpixels of region ri. Thus, a superpixel si belongs to a
region ri if, for a given j, we have that sj ∈ ri and si is
considered a neighborhood of 8-connected pixels of sj and
if it satisfies to Equation 7.

Finally, we analyze the regions with the largest number
of pixels with the aim of eliminating small noisy regions
that do not represent any animal in the image, e.g., rocks
or ant nests that may be warmer than the ambiance. To this
end, we first obtain the region with the largest number of
pixels of the set R with Mr =

z
max
i=1

(Tamri), where Tamri

is the size in pixels of the region ri. Then, we check for
every region ri, if Tamri >

Mr

pmin
, where pmin is a variable

that defines the lowest accepted ratio between Tamm and
Mr. As an example, if pmin = 4, all regions ri that have
size Tamri greater than 25% related to the region Mr will
be defined as a region of interest of the image I .

Therefore, the set of regions of interest that de-
tect the animals in the image is defined as ROI =
roi1, roi2, . . . , roin}, where each region roii is a region
of interest. In turn, each region of interest is defined as
roii = {xroii , yroii , wroii , hroii}, where xroii and yroii



define the starting point (upper left corner of the region),
and wroii and hroii represent the width and height of the
region.

4.2. Animal Recognition

After the animal detection in the image, that is, the
region proposal, the proposed approach for the identification
of animal species is performed by using a convolutional
neural network. We chose convolutional neural networks
due to the recent performance in various computational
vision tasks [6], [12], obtained mainly through the AlexNet
networks [12], and the VGGNet [6].

Our animal species classification surpasses the com-
petitor methodology Fast R-CNN by using the regions of
interest obtained by the SLIC algorithm over the thermal
images. Fast R-CNN works differently, it detects regions of
interest directly over the RGB images not counting on the
SLIC pre-processing. Figure 1 shows the diagram of the
proposed approach.

On the training set, we performed a pre-processing step
by resizing each RGB image I to a fixed-size of 224 ×
224 × 3. In this paper, we use the convolutional network
VGGNet; however, any other convolutional network can be
used. In addition, another pre-processing on the training set
is performed by subtracting the mean RGB value from each
pixel, as given by:

I(x, y,R) = I(x, y,R)− µR

I(x, y,G) = I(x, y,G)− µG

I(x, y,B) = I(x, y,B)− µB

(8)

where µ{.} is the mean color of all images of the training
set.

Each image is processed up to the last convolutional
layer to obtain the feature map, named here as MPc. Once
we obtain the feature map after Step 3, we use the detected
set of regions of interest ROI to perform the feature vector
extraction over the feature map of each individual roii.
However, since the ROIs were extracted from the input
image I , and the features map MPc has dimensions smaller
than the dimension of I (due to the output format of
VGGNet), we also have to project each roii on the map.
We use the dimensions xroii , yroii , wroii e hroii to obtain
the projection over MPc. To achieve this goal, we use a max
pooling to convert each roii into a feature vector with a di-
mension of 7×7 pixels, called hyper-parameters. The result
is a projected region rproj = {xproj , yproj , wproj , hproj},
an appropriate input to Step 4. After Step 5, the network
has two output vectors per ROI: the softmax probabilities
and the bounding-box regression. Our approach is trained
end-to-end with a multi-task loss.

5. Experimental Results

5.1. Image Datasets

Our image datasets are divided into training and test sets,
as explained in the following subsections.

Training dataset: the training dataset was obtained from
the well-known IMAGEnet dataset [11], comprised of im-
ages from the web. Images were taken with different il-
lumination and points of view, as well as with different
image resolutions. We used a subset of IMAGEnet with
8 classes, 600 images each class, totalizing 4,800 images
of animals species from the Pantanal biome. The classes
of animal species are: Brazilian Tapir (Tapirus terrestris),
Blue-and-yellow Macaw (Ara ararauna), Capybara (Hydro-
choerus hydrochaeris), Collared Peccary (Pecari tajacu),
Cougar (Puma concolor), Turquoise-fronted Amazon (Ama-
zona aestiva), South American Coati (Nasua nasua), and
Giant Anteater (Myrmecophaga tridactyla).
Test dataset: the test dataset is comprised of thermal and
RGB images with dimension of 640 × 480 pixels. Notice
that the thermal images are used to detect regions of interest
in the images; the animal identification occurs over RGB
images similar to those of the training dataset. The thermal
images were captured with a thermal camera FLIR SC640.
Parameters of the camera were set to the standard values,
including 0.98 of emissivity, 60% of humidity and 25◦C
temperature. We used distances ranging from 1 to 5 meters
from an orthogonal direction. The total of images sums up
to 1,600 thermal and RGB images, divided into 8 classes of
animal species taken from the Pantanal biome.

5.2. Implementation Details

Our approach was implemented on MATLAB, using the
package matconvnet [17]. The training step was performed
over two images each time, since proposed by [5]. We
used the default value of 75 epochs for training the neural
network. Each epoch corresponds to one training using all
the images from the training dataset. We used a learning rate
of 1e−3

64 for the first 50 epochs and 0.1 ∗ 1e−3
64 for the 25

remaining epochs. The experiments ran on a Nvidia Titan
X GPU. For the testing step, we used the testing dataset
described in Section 5.1, comparing our approach to the
Fast R-CNN method. For detecting regions of interest, we
used the technique SLIC, setting the number of superpixels
to k = 1, 500, and the level of compactness to m = 5. In
our work, we adapted the last fully-connected layer for the
number of classes used in the experiments, in the case, 8
classes of wild animals.

5.3. Evaluation Metrics

This paper adopted the same metrics described in the
competitor work of Girshick [5], which are widely used
in region detection by convolutional networks: (i) average
precision and (ii) f -measure. The evaluation of the method
considers ground-truth images annotated by an expert. To
determine if the target region was correctly classified, we
considered true positives (tp) and false positives (fp), the
accuracy is calculated according to the intersection over
union (IoU). Furthermore, with the labels of each region
of interest, four metrics can be calculated to measure the
performance of the algorithms: precision (PR), recall (RE),



(6) Animal species 
classification

Capybara
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Giant Anteater
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...

(1) Input RGB image (2) Convolution 
process of the CNN
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(4) Fixed-length 
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(5) Fully-connected 
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Detection of ROIs

Input thermal image Regions of interest (ROIs)Definition of superpixels Segmentation of animals

Figure 1. The proposed approach: (1) input RGB image into a fully convolutional network; (2) convolution process using the entire image to obtain the
feature map of the last convolutional layer; (3) feature map extraction using the regions of interest proposed by our approach; (4) fixed-length feature
vector scaled using a max pooling layer; (5) fully-connected layers with the scaled feature vectors of step (4); and (6) recognition of the animal species
performed using the softmax classifier and bouding-box regression for each ROI.

f-measure (FM ), and the average precision (AP ). Such
measures are formalized in Equations 9 and 10.

PR =
tp

tp+ fp
and RE =

tp

p
=

tp

tp+ fn
(9)

AP =
PR

RE
and FM = 2× PR×RE

PR+RE
(10)

5.4. Recognition of Animal Species

Figure 2 shows the results of our approach using the
precision and recall curves, compared to the Fast R-CNN
method under two versions: (i) the traditional Fast R-CNN
with Selective Search over RGB images only, and (ii) the
Fast R-CNN with Selective Search over RGB images, as
well as over thermal images. All candidate regions are then
used in the test step. In this experiment we used 8 classes
of animal species. For all the plots, the x-axis corresponds
to the recall values (RE), while the y-axis corresponds to
the precision values (PR), both of them varying from 0 to
1. The value of the average precision (AP ) is calculated by
the area under the curve. It is worth noticing that the higher
the area under the curve, the higher is the average precision
value.

Table 1 shows the evaluation of our approach compared
with Fast-CNN for two metrics: (i) average precision (AP )
and (ii) f -measure for all the animal classes. In addition,
at the bottom of the columns, we present the mean average
precision (mAP ) of all the classes for both metrics. Our
approach achieved a mean average precision of 83.89% vs
76.45% compared with Fast R-CNN, while for the mean f -
measure, our approach achieved 77.95% vs 73.06% of Fast
R-CNN. We also compared our methodology to the Fast R-
CNN with Selective Search applied to RGB images and over

themal images. Although the perfomance of both spectra
with Selective Search has slightly improved related to the
traditional Fast R-CNN, it did not outperform the results
achieved by our approach. In terms of comparison, for
animal classes, our approach outperformed the Fast R-CNN
values for the average precision and f -measure metrics. The
best results were achieved for the Cougar and Blue-and-
yellow Macaw classes. On average, for both classes, our
approach performed 10% better on the average precision
and, 6% for f -measure. In contrast, results achieved by
our approach for Brazilian Tapir and South American Coati
classes were closer to the Fast R-CNN method, improving
by 6% for average precision and 3% for f -measure.

To support our numerical analysis, in Figure 3, we
visually present the detected regions of interest in a sample
of images; we use our method and the Fast R-CNN method.
We use a red frame to emphasize the results in each scene.
The two first left-hand columns present three examples of
multiple-animals identification, comparing Fast R-CNN to
our approach. The two right-hand columns show a single
animal identification. Our approach visually performed bet-
ter in images with multiple animals. For single animals,
although both methods can detect the animal, our approach
can frame the animal with higher accuracy, as well as higher
probability prediction, as indicated in the blue boxes on top
of the red frames.

5.5. Discussion of Results

We tested our approach with images of animal species
taken under real conditions in a wild forest. The accuracy for
all species are compared with the competitor Fast R-CNN;
Figure 2 presents the results. It is evident that our approach
obtains the best accuracy for all the animal species using the
average precision, which is based on the precision and recall
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Figure 2. Results of the average precision for the eight animal species of the Pantanal biome: Brazilian Tapir (a), Blue-and-yellow Macaw (b), Capybara
(c), Collared Peccary (d), Cougar (e), Turquoise-fronted Amazon (f), South American Coati (g), and Giant Anteater (h).

curves. It should be noted that the thermal imaging improves
the results if compared with the Fast R-CNN, locating the
animals in the images and increasing the robustness for
animal recognition.

Table 1 shows the accuracy results per animal class using
our approach versus Fast R-CNN, evaluated by average
precision and f-measure metrics. In all the classes, the accu-
racy reached a high performance. The lowest performance
was observed in the case of species Brazilian Tapir and
South American Coati with an average precision of 6%; the
best results were 10% higher on average precision for the
Cougar and Blue-and-yellow Macaw classes. This also illus-
trates how our approach has better and robust representation
ability, superior to Fast R-CNN location and recognition

using thermal infrared. Despite the fact that the region-based
CNN usually has good results in detection performance, our
approach also performs favorably in different kinds of pose
and illumination conditions.

In addition, Figure 3 shows the results of the visual
comparison of our experiments versus the Fast R-CNN
method. The columns illustrate the identification of animals,
along with the corresponding probability prediction (blue
box on top). For multiple animals present in the image,
our results show superior robustness in terms of location
and recognition. Note that, in this work, the CNN was fine-
tuned by means of a large training dataset. This proves that
the automatic recognition using camera-trap is possible for
helping biologists and ecologists, but it depends on having



Average Precision (AP) (%) f -measure (FM) (%)
Animal Species Fast R-CNN Fast R-CNN
of the Pantanal SS SS Our SS SS Our

(Default) (RGB+Thermal) Approach (Default) (RGB+Thermal) Approach
Brazilian Tapir 87.08 88.94 91.58 87.96 87.50 93.60

Blue-and-yellow Macaw 68.38 68.28 78.89 48.57 49.65 53.79
Capybara 88.95 88.83 98.06 78.30 77.59 80.65

Collared Peccary 83.48 81.73 90.88 85.08 83.80 90.53
Cougar 82.16 87.52 92.27 89.47 89.12 96.94

Turquoise-fronted Amazon 80.97 83.14 86.49 78.15 79.32 83.68
South American Coati 59.45 57.57 63.72 54.08 54.82 59.90

Giant Anteater 61.16 60.96 69.30 62.89 63.75 64.52
Mean Average Precision 76.45 77.12 83.89 73.06 73.19 77.95

TABLE 1. COMPARISON OF THE RESULTS BETWEEN THE PROPOSED APPROACH AND THE COMPETITOR METHOD FAST R-CNN. EACH ROW SHOWS
AN ANIMAL SPECIE, WHILE COLUMNS SHOW THE RESULTS FOR THE AVERAGE PRECISION AND f -MEASURE METRICS.

0.9942 0.9977
0.9793

0.5886
0.9587

0.7871 0.8968

0.5687

0.8815 0.9666

0.7592

(a) Fast R-CNN

0.8756

0.7846

(b) Our Approach

0.6707

(c) Fast R-CNN

0.9942

(d) Our Approach

Figure 3. Visual comparison of regions detection achieved by Fast R-CNN and by our approach. In the left-hand first two columns, the detection performance
for multiple animals on the scene; in the last right-hand two columns, we see examples of only one animal. Blue boxes on top of the animals refer to the
animal recognition probability generated by the network architecture VGGNet.

enough data.

6. Conclusion and Future Works

In this paper, we presented a methodology to detect and
recognize animal species observed in wild conditions. We
used deep convolutional neural networks trained to distin-
guish between eight different animal species. The training
of the network was based on images extracted from the
IMAGENet dataset. For testing, we constructed a dataset
with regular RGB images and images taken with a thermal

camera. By combining regular RGB images and thermal
images, we surpassed the results of the method Fast R-
CNN, which had limitations in detecting the regions of a
given image in which animals were present.

In our approach, we selected regions from the thermal
images using the segmentation algorithm SLIC; then, we
used the regions of interest, as indicated by their thermal
signatures, to identify the corresponding regions as seen
in the RGB images. These regions were input to a neural
network capable of tracing the probability of finding a given
species in each region of interest. We directly compared our



method to the Fast R-CNN method over metrics precision
(PR), recall (RE), f-measure (FM), and average precision
(AP). Our method outperformed the Fast R-CNN results
in all the tests concerning the recognition of the animal
species. As future works, we expect to increase the number
of animal species and improve the success in large-scale
animal recognition by using camera-trap images. In addition,
we intend to compare with differents methods, including
Faster-RCNN and Yolo2.
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