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A B S T R A C T

Agriculture plays an important role in the economy of several countries, contributing from the production of
food and income to the generation of jobs. To improve productivity in agriculture, proper crop management
should be accomplished through pest control. One approach is to monitor the defoliation level, that is, the
percentage of leaf damaged by insects. Despite the importance, this monitoring is performed manually most of
the time, which affects reliability as well as it is considered to be a time-consuming task. In this paper, we
propose a new fully-automatic method to estimate the defoliation level based on convolutional neural networks
(CNN). The main CNN architectures (AlexNet, VGGNet and ResNet) were adapted from classification to re-
gression by replacing the softmax layer with a fully-connected layer with one neuron and a sigmoid activation
function. Since CNNs require a large number of training examples, this paper also proposes approaches for
generating synthetic defoliation images. In this way, our method is trained only with synthetic images and
evaluated using real images. In the experiments, we obtained a root mean square error of only 4.57 even for
images with severe defoliation. Additionally, we presented experimental evidence that the proposed method
reconstructs the damaged leaf parts to then estimate the defoliation level.

1. Introduction

Agriculture is one of the most important activities for developing
countries, contributing to the production of food and raw material. In ad-
dition, agriculture provides employment opportunities for a large portion of
a country population and represents a large part of the national income
(FAO, 2017). Despite the importance and productivity growth in recent
years, agriculture in 2050 will have to produce almost 50 percent more than
it did in 2012 to meet the demand of the world population (FAO, 2017).

To increase productivity, proper management of a crop, including pest
control, is crucial. Annually, plant pests cause crop losses of 20 to 40 percent
of production (FAO, 2017). The losses caused by invasive insects cost the
global economy around US$70 billion annually (Bradshaw et al., 2016). The
main consequence of invasive insects is the herbivory and injury that result
in a functional reduction of the total leaf surface of the plant. The loss of leaf
area, namely defoliation, affects the photosynthesis and energy production
of the plant, which decreases its nutrition and consequently the final pro-
duction of the crop. In this way, it is important to monitor the defoliation
level to take preventive actions. For soybeans in the vegetative stage, it is

recommended to start treatments when the defoliation level reaches 30%
(Kogan et al., 1977).

In most cases, defoliation level is estimated visually by experts using a
guide (examples of leaves and their respective defoliation level) (Kogan
et al., 1977). Another common way is to use the grid counting method (Kvet
and Marshall, 1971), in which the expert positions the leaf in a grid and
counts the number of squares that overlap the leaf in order to estimate its
area. Therefore, defoliation level estimation using the above techniques is a
time-consuming and subjective task. In addition, the defoliation level is
generally overestimated by these techniques, which leads to unnecessary
insecticide applications (Wilhelm et al., 2000). Also, leaf area meters de-
vices, such as the LI-3000A and LI-3100 (Barclay et al., 2000; dos Santos
et al., 2016), are currently available to automatically estimate the leaf area.
To estimate the defoliation level, these devices need to calculate the leaf
area before and after herbivory. Although the leaf area after herbivory can
be correlated to the defoliation level, it does not estimate the damaged area,
especially when it occurs at the edges.

To avoid subjectivity and speed up the measurement process, compu-
tational methods have been proposed. Mobile applications (Gong et al.,
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2013b,Gong et al., 2013a) and desktop software (Karatassiou et al., 2015;
Parmar et al., 2016; Houborg and McCabe, 2018; Fan et al., 2018) are
available to estimate the leaf area, although they do not estimate defoliation
level. Similar works to estimate the defoliation level were proposed in
Machado et al. (2016) and Nazaré-Jr et al. (2010). Machado et al. (2016)
presented a mobile application that estimates the defoliation level using
Bezier curves to restore the original leaf border. Although this method in-
crease reliability and speed, it still requires the intervention of an expert, for
example, to draw the leaf border using the Bezier curve. On the other hand,
Nazaré-Jr et al. (2010) proposed an automatic method to estimate the de-
foliation level. In this method, corners of damaged areas are detected and
then line segments are drawn between each corner. However, the method is
not suitable for severe defoliation, where the corners required by the
method are not present in the image.

To overcome these issues, this paper proposes a method to estimate
the defoliation level of soybean leaves using deep learning, which is, to
the best of our knowledge, the first fully automatic method with low
mean error for severe defoliation. The proposed method adapts the
traditional convolutional neural networks (CNN) for regression by re-
placing the last layer with a fully-connected layer composed by one
neuron and a sigmoid activation function. However, it is well known
that deep CNN training requires a large number of examples (Oquab
et al., 2014), in our case, a large set of images with defoliation and their
estimated level by experts. To deal with the number of training images,
this paper also proposes methods for generating images with synthetic
defoliation. Through these methods, CNN training can be done with the
desired number of images at no cost to obtain them.

After the training using only synthetic images, the proposed method was
evaluated in real images containing defoliation caused by S. Frugiperda ca-
terpillars. Experimental results show that the proposed method obtained a
mean squared error of only 4.57, even for leaves with severe defoliation in

which a large part of the leaf is damaged. During the analysis of the pro-
posed method, we found that the CNN layers learned to reconstruct parts of
the leaf to then estimate the defoliation level. This finding and the quanti-
tative results show that the proposed method is robust and can be used to
estimate the defoliation level properly.

This paper is organized as follows. A new method for estimating the
defoliation level is presented in Section 2. In Section 3 we present the
experimental setup, which includes the image dataset, training con-
figurations and evaluation metrics. In Section 4 experimental results
and discussion are provided. Finally, Section 5 concludes the paper and
provides the future works.

2. Proposed method

In this section, we describe the proposed method for estimating
defoliation in soybean leaves using convolutional neural networks
(CNN). Basically, the proposed method can be described in three steps:
(i) image preprocessing, (ii) generation of synthetic defoliation, (iii)
CNN modeling and training. Fig. 1 illustrates the steps of the proposed
method that are detailed in the sections below.

2.1. Image preprocessing

First the input image is resized to a fixed size of ×256 256 pixels that
corresponds to the CNN input size. This resizing aids in the image
standardization, besides contributing to the computational cost. The
colored image is then binarized by applying the Otsu thresholding
(Bangare et al., 2015) so that the image contains only two regions
corresponding to the leaf and the background. Finally, the image is
rotated at a random angle in order to make our method invariant to
rotation. Fig. 2 shows the preprocessing of an input image.

Fig. 1. The proposed method can be described by the steps illustrated in this figure. Initially, images are preprocessed and then synthetic defoliation is generated
using the proposed approaches. Then, a CNN is trained with regression to estimate the defoliation level.

Fig. 2. Example of preprocessing of an input image. The image is resized to ×256 256 pixels, binarized and rotated at a random angle.
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2.2. Synthetic defoliation methods

To achieve good accuracy, training of most methods relies on huge
amounts of labeled data. However, acquiring labeled images for defo-
liation requires the manual labor of a specialist, making it a time-con-
suming and expensive process. To overcome this problem, this work
proposes three methods for synthetic defoliation. Through these
methods, algorithms can be trained with thousands of images at no cost
of development.

The synthetic defoliation methods receive a pre-processed image
and return a new image with defoliation and its defoliation level.
Basically, the proposed methods remove leaf-belonging pixels in dif-
ferent ways to simulate an actual defoliation. The defoliation level is
then estimated by the number of pixels removed n relative to the initial

leaf area a, according to Eq. (1). The synthetic defoliation methods,
called Polygonal, Circular 1 and Circular 2, are described below.

=d n
a

100 (1)

• Polygonal Defoliation: the first method simulates defoliation using
polygons formed in the leaf area. Given a random pixel p belonging
to the leaf, triangles of random sizes are generated with one end in p,
forming a polygon as shown in the Fig. 3. The number of polygons is
chosen according to the desired defoliation level. Fig. 5(a) illustrates
examples of synthetic defoliation generated by the polygonal
method.

• Circular Defoliation 1: this method consists of making circles in the
leaf region. Given a random pixel p of the leaf, we generate a main
circle with random radius and center in p. Then, secondary circles
with different radii are generated in the circumference of the main
circle, as shown in Fig. 4. Examples of synthetic defoliation using the
Circular method are shown in Fig. 5(b).

• Circular Defoliation 2: the latter method is similar to the previous
one, in which a main circle with center in a random pixel of the leaf
is generated. However, secondary circles with random radius are
generated within the main circle. Fig. 5(c) shows examples of syn-
thetic defoliation using the circular method.

2.3. CNN modeling and training

Given a set of images generated by the synthetic defoliation
methods, we trained a convolutional neural network. Due to the recent
results, three architectures have been evaluated: AlexNet (Krizhevsky
et al., 2012), VGGNet (Simonyan and Zisserman, 2014) and ResNet (He
et al., 2016). These architectures were proposed for classification pro-
blems, that is, given an input image the objective is to classify it into
one of the known classes. To adapt an architecture to a regression
problem, we have removed the softmax layer that returns the class
probabilities and added a fully-connected layer with one neuron and a

Fig. 3. Example of synthetic defoliation generated by the Polygonal method.

Fig. 4. Example of synthetic defoliation generated by the Circular method.

Fig. 5. Example of five images generated by the three methods: polygonal, circular 1 and circular 2.
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sigmoid activation function to estimate the defoliation level. Also, we
have trained the architectures using Root Mean Square Error (RMSE)
loss function instead of cross-entropy.

2.3.1. AlexNet
AlexNet (Krizhevsky et al., 2012) is the architecture responsible for

the recent success of convolutional neural networks, mainly because of
its results in the ILSVRC ImageNet competition. This architecture con-
sists of five convolutional layers, three max-pooling layers with filters
of size ×3 3 applied with a stride of 2, and three fully-connected layers,
the first two with 4096 neurons and the last one with 1000 neurons.
The convolutional and fully-connected layers are followed by the ReLU
activation function, except the last fully-connected layer which is fol-
lowed by softmax action function. Example of AlexNet activation maps
after the proposed modification can be seen in Fig. 6. We can observe
that the last layer is composed of one neuron responsible for estimating
the defoliation level. In addition, the last layer after the modification is
followed by a sigmoid action function in order to return values between
0 and 1 (defoliation level).

2.3.2. VGGNet
VGGNet (Simonyan and Zisserman, 2014) proposed a significant

increase in the number of layers when compared to AlexNet, enabling
an improvement in image recognition. This architecture consists of 13
convolutional layers, 5 max-pooling layers and 3 fully-connected layers.

Each convolutional layer has filters with a small receptive field of
×3 3, stride of 1 and padding that preserves the spatial resolution (e.g.,

the padding is 1 for ×3 3 convolutional layers). The number of filters
varies from 64 to 512 depending on the layer depth. The five max-
pooling layers are performed over a ×2 2 pixel window using stride of
2. All convolutional layers are followed by the ReLU activation func-
tion.

The final part of the VGGNet is composed of three fully-connected
layers. The first two fully-connected layers have 4096 neurons and
ReLU activation function. In this architecture after the modifications,
we also have only one neuron in the last fully-connected layer with a
sigmoid activation function.

2.3.3. ResNet
To train deeper convolutional neural networks, He et al. (2016)

proposed a residual learning framework. The core idea of ResNet is to
create residual blocks composed of convolutional layers. The main
difference is that the input of the block is added to its output obtained
after the block convolutions. These special skip connections simplify the
optimization of convolutional neural networks.

In this work, we modify the ResNet with 50 layers so that the last
layer has one neuron with a sigmoid activation function. In this ar-
chitecture, the first convolutional layer has ×7 7 filters with a stride of
2. A ×3 3 max-pooling layer with stride of 2 is performed after the
convolutional layer. Then a stack of residual blocks are applied, which
are composed of convolutional layers with ×1 1 and ×3 3 filters.
Further details on all parameters can be found in He et al. (2016).

Finally, an average-pooling and a fully-connected layer

3. Experiments

3.1. Image dataset

To evaluate the proposed method, we have used the image dataset
presented by Sarath et al. (2015). To build this image dataset, soybean
cultivars (DM 6563 RSF IPRO and BRS 284) were grown in pots in a
greenhouse. After 40 days of germination, 150 leaves were removed
and photographed on a white paper background using a Sony Alpha
DSLR-A350 camera. Example of five leaves can be seen in Fig. 7(a).

Then, 24-h fasting Spodoptera Frugiperda caterpillars were placed for
herbivory. All caterpillars were 10 days old. Twenty-four hours after the
placement of the caterpillars, image capture of the leaves was per-
formed again. Example of five leaves after the herbivory can be seen in
Fig. 7(b). Thus, two images (before and after) were obtained for each of
the 150 leaves.

The defoliation level of each leaf was estimated using the software
proposed in Sarath et al. (2015) and corroborated by the grid count
method. Basically, the software calculates the leaf area before and after
the herbivory to estimate the percentage of defoliation. It is important
to mention that the objective of the proposed method is to estimate the
defoliation level using only the leaf image after herbivory.

3.2. CNN training

CNN training was performed using only images generated by syn-
thetic defoliation methods. In this way, three image datasets were
created, one for each synthetic defoliation method (Polygonal, Circular
1 and Circular 2 Defoliation). For each dataset, we generated 10,000
images that are equally spaced in each 10% range of defoliation.
Therefore, 1000 images have defoliation between 0% and 10% and so
on. In addition, a fourth dataset composed by all images of the datasets
was created to evaluate the influence of the three datasets together in
the training. The objective is to show that CNNs trained only with
synthetic images are capable of estimating the defoliation of an actual
image.

CNNs were trained using Stochastic Gradient Descent (SGD) for 30
epochs with learning rate of 0.01. For AlexNet and VGGNet, it was used
a batch size of 100, in contrast, ResNet was trained with batch size of
10. All CNNs were trained in a computer with i7-5820 3.3GHZ CPU,
32 GB RAM, and NVidia Titan XP GPU. Our implementation was
written in python using the Tensorflow library.1

Table 1 shows the total training time using 10000 images during 30
epochs. AlexNet took about 10min to complete the training while Re-
sNet and VGGNet took approximately 46min and 11 h respectively. The
longer time of ResNet and VGGNet is due to the greater number of
layers compared to the number of AlexNet layers.

Fig. 6. Example of AlexNet Activation Maps. This architecture consists of convolutional, max-pooling and fully-connected layers, and the last layer contains only one
neuron to estimate the defoliation level.

1 http://tensorflow.org/.
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According to the loss function of Fig. 8, it is shown that the training
occurred properly, obtaining a low value after 30 epochs. We can also
observe from this figure that 30 epochs are sufficient, since the loss
function has stabilized.

3.3. Evaluation metric

After the training, the proposed method for defoliation estimation
was evaluated using the dataset of real images (Section 3.1). Therefore,
it is important to mention that the proposed method is trained only with
synthetic images and evaluated using real images.

Given the defoliation level di for image i and the estimate of defo-
liation di obtained by the proposed method, Root Mean Square Error
(RMSE) can be calculated by Eq. (2).

=
=

RMSE
n

d d1 ( )
i

n

i i
1

2

(2)

where n is the number of images.

4. Results and discussions

In this section, we present the results and discussions in three ex-
periments: quantitative evaluation using root mean square error, qua-
litative evaluation, and interpretability.

4.1. Quantitative evaluation

Table 2 presents RMSE for the proposed method using different CNN
architectures and synthetic defoliation methods for training. As we can
see, AlexNet achieved the best result for Polygonal and Circular 1 with
RMSE of 4.95(±6.82) and 5.02(±6.61), respectively. On the other hand,
VGGNet obtained the best result of 6.05(±8.95) for Circular 2. ResNet
presented inferior results when compared to AlexNet and VGGNet in
the three synthetic defoliation methods. This indicates that archi-
tectures with few convolutional layers already obtain good results,
since the input images are binary.

Comparing the synthetic defoliation methods, Polygonal obtained
the best results for all architectures, followed by Circular 2 and Circular
1. However, the best result is obtained when AlexNet is trained with
images generated by all three synthetic defoliation methods. This result
of only 4.57(±5.80) is very relevant, since the proposed method was
trained only with synthetic images and validated with real ones.

Fig. 9 shows a histogram of absolute errors obtained by the pro-
posed method using AlexNet. For an image i, the absolute error ei can be
calculated by Eq. (3), where di is the ground truth defoliation level and
di is the defoliation level estimated by our method. It is observed that
most of the absolute errors were between [0, 1], that is, 32 of the 125
images had an absolute error smaller than 1. We can also observe that
only five images had an absolute error greater than 10, which is an

Table 1
Total training time in a set of 10,000 images during 30 epochs.

Architect. Training time Time per epoch

AlexNet 10m 28 s 21 s
ResNet 46m 58 s 1m 34 s
VGGNet 11 h 13m 45 s 22m 27 s

Fig. 8. Loss function obtained during the training of the proposed method.

Table 2
Root mean square error (RMSE) for architectures and synthetic defoliation
approaches used by the proposed method. The proposed method was trained
only with synthetic images and the RMSE was calculated only for real images.

Architect. Polygonal Circular 1 Circular 2 All

AlexNet 4.95 (±6.8) 5.02 (±6.6) 7.63 (±13.2) 4.57 (±5.8)
VGGNet 5.29 (±7.6) 6.48 (±8.1) 6.05 (±8.9) 4.65 (±6.4)
ResNet 12.58 (±17.1) 15.04 (±18.5) 13.35 (±17.7) 14.60 (±18.8)

Fig. 7. Images of leaves before and after herbivory. Defoliation level can be estimated by the ratio of the leaf area of both images.
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expressive result for a fully automatic method. The maximal defoliation
level of the test set is 64%. In this sample, our method estimated the
defoliation level as 55.13%, an absolute error of 8.87.

=e d di i i (3)

To visualize the distribution of estimated and ground truth defo-
liation levels, Fig. 10 shows two boxplots. As we can see, the two dis-
tributions are similar with mean and standard deviation close, which
corroborates the defoliation estimation performed by the proposed
method.

4.2. Qualitative evaluation

For qualitative evaluation of the proposed method, Fig. 11 shows
examples of images and their respective defoliation level. Fig. 11(a)-(d)
present examples of good estimates obtained by the proposed method,
which achieved errors less than 1% in the defoliation level. On the
other hand, Fig. 11(e)-(h) present examples of poor estimates of the
defoliation level performed by the proposed method. As expected, the
most difficult cases occur when the defoliation level is high and at the
edges, where the method would have to rebuild the leaf shape. Despite

the challenges, the highest error of these examples was approximately
12%, which is similar to human perception (Shen, 2003).

On the other hand, Fig. 11(i)-(l) present examples of severe defo-
liation whose level was properly estimated by the proposed method.
These results show that, even in leaves with severe defoliation, the
proposed method can lead to a good estimate in most cases. Hence, the
approach described here has proven to be effective for defoliation es-
timation.

4.3. Interpretability of the proposed method

To visualize the learned features of the proposed method, we select
the activation maps of the first, second and third layers, which are
shown in Fig. 12. It is possible to notice that after each layer, the
proposed method reconstructs parts of the leaf, which would facilitate
the defoliation estimation. After the first layer, the activation maps
show that the inner regions of the leaves have been reconstructed. It
was possible to visualize that the reconstruction continues in the second
and third layers according to Fig. 12.

The proposed method can be interpreted as gradually transforming
the leaf image into a representation in which the defoliation level can
be estimated by regression. To visualize the space of this representation,
we fed our method with leaf images to obtain high-dimensional vectors
of the last layer. Then, we embed these vectors in two dimensions using
t-Distributed Stochastic Neighbor Embedding (t-SNE) (van der Maaten,
2014). The result can be seen in Fig. 13, where each point corresponds
to an image and its circumference is proportional to the defoliation
level. We can observe that images with high defoliation level were
grouped in the upper right corner while images with low defoliation
level were grouped in the lower left corner. Thus, it is possible to va-
lidate the hypothesis that the information extracted by the proposed
method is relevant for estimating defoliation level.

4.4. Comparison with BioLeaf - Foliar Analysis

In this section, we compare the proposed method with BioLeaf -
Foliar Analysis (Machado et al., 2016), a mobile application that esti-
mates the defoliation level by counting the leaf holes. Given an RGB
image, it is converted to CIE La∗b∗ color space, binarized by Otsu
thresholding and smoothed out for noise suppression. When the leaf has
defoliation at the borders, the user must draw the missing parts
manually with the help of Bezier curves. Finally, the defoliation level is

Fig. 9. Histogram of absolute errors obtained by the proposed method. The x-axis represents error range while the y-axis represents the number of images in each
range.

Fig. 10. Distribution of estimated and ground truth defoliation levels.
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estimated by counting the number of pixels belonging to leaf holes in
relation to the total leaf area.

For comparison with BioLeaf, three users estimated the defoliation
level and drew the edges when necessary. Thus, the BioLeaf results
correspond to the average of the three estimates. Table 3 presents the
estimation of the defoliation level obtained by the proposed method
and BioLeaf. In the first row, we show the leaves in which the proposed
method was superior to BioLeaf. As we can see, the estimation of the
proposed method is better when defoliation occurs at the leaf borders.
On the other hand, BioLeaf presents good precision when the

defoliation occurs in the inner regions or in small parts of the border, as
presented in the leaves of the second row of the figure.

Fig. 14 shows the defoliation estimated by the proposed method
(blue circles) and BioLeaf (green circles) in 58 randomly chosen leaves
from the image dataset of Section 3.1. The x-axis represents the defo-
liation while the y-axis represents the estimation obtained by the
methods. The radius of the circles is proportional to the error.

The methods presented good estimates for both low and high de-
foliation since they have high correlation with the ground truth.
Pearson correlations for the proposed method and BioLeaf are respec-
tively 0.987 and 0.986. Despite the similar results, it is important to
emphasize that the proposed method is completely automatic, making
the estimation process much faster.

4.5. Leaf shape influence

The performance of the proposed method was also evaluated in
leaves with different shapes. We have obtained images of two species,
Acer Campestre and Juglans Regia, from the Middle European Woody
Plants (MEW) dataset (Novotný and Suk, 2013). The images were
submitted to synthetic defoliation methods in order to obtain 10000
training images and 1000 test images. Both training and test sets have
different defoliation levels that can be seen in Fig. 15.

Initially, we evaluated the ability of the proposed method to predict
defoliation of other species when trained only on soybean leaves. In this
scenario, the first row of Table 4 shows that the proposed method was

Fig. 11. Examples of images with the defoliation level di and its estimation di obtained by the proposed method. The first row corresponds to the examples with good
estimates while the second row presents unsuitable estimates. The third row presents challenging examples whose proposed method has reached a good estimate.

Fig. 12. Activation of the first, second and third layers of the proposed method.
We can observe that the hidden layers reconstruct the damaged parts of the leaf.
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able to predict the defoliation level with good RMSE (9.82 and 9.62)
even when trained in images of another species. We then trained our
method using images with the new species and the RMSE is presented in
the second row of Table 4. As expected, the RMSE decreased for both
species presenting a very promising value (e.g., from 9.82 to 5.17).

5. Conclusion

Estimating defoliation is a crucial step in the adoption of insect-pest
control strategies. To automate this process, this paper proposed a
completely automatic method to estimate the defoliation level using
convolutional neural networks (CNNs). In the proposed method, we
replace the last layer of the CNNs (responsible for classification) by a
layer to perform the regression of the defoliation level. Since CNNs
require many examples for training, we also proposed approaches for

generating images with synthetic defoliation to train our method.
In the experiments, we have evaluated three CNN architectures

(AlexNet, VGGNet and ResNet) that were trained only with synthetic
images generated by the proposed approaches. We found that AlexNet
estimated defoliation adequately with root mean square error of only
4.57, which is an expressive result for leaves with severe defoliation. In
the proposed method analysis, it was observed that the internal layers
reconstructed the missing parts of the leaf to perform the defoliation
estimation. In addition, visualization of the last layer projected for two
dimensions showed that the proposed method extracted information
directly related to the defoliation level. As part of the future works, we
intend to extend the method to color images and include new methods
to generate synthetic defoliation. We also intend to evaluate the influ-
ence of including real images in training.

Fig. 13. Projection of the last layer in two dimensions for different images using t-SNE. It is observed that the images were grouped according to the defoliation level.

Table 3
Comparison of the defoliation level estimated by the proposed method and
BioLeaf. The ground truth defoliation level was obtained as described in Section
3.1.

Methods

Ground Truth 24 15 41 53
Proposed

Method
26.52 14.56 42.64 51.11

BioLeaf 29.66 13.28 44.47 50.02

Methods

Ground Truth 7 16 17 25
Proposed

Method
5.05 14.63 14.97 23.02

BioLeaf 6.1 15.13 15.14 25.49

Fig. 14. Comparison of the proposed method and BioLeaf for 58 randomly
leaves. Pearson correlation for the proposed method and BioLeaf are 0.987 and
0.986, respectively.

L.A. da Silva et al. Computers and Electronics in Agriculture 156 (2019) 360–368

367



Acknowledgments

This work was supported by the FUNDECT - State of Mato Grosso do
Sul Foundation to Support Education, Science and Technology, CAPES -
Brazilian Federal Agency for Support and Evaluation of Graduate
Education, and CNPq - National Council for Scientific and
Technological Development. The Titan X Pascal used for this research
was donated by the NVIDIA Corporation.

References

Bangare, S., Dubal, A., Bangare, P., Patil, S., 2015. Reviewing otsu’s method for image
thresholding. Int. J. Appl. Eng. Res. 10 (9), 21777–21783.

Barclay, H., Trofymow, J., Leach, R., 2000. Assessing bias from boles in calculating leaf
area index in immature Douglas-fir with the LI-COR canopy analyzer. Agric. For.
Meteorol. 100 (2), 255–260.

Bradshaw, C.J., Leroy, B.A., Bellard, C.A., Roiz, D.A., Albert, C.A., Fournier, A.A., Barbet-

Massin, M.A., Salles, J.-M.A., Simard, F.A., Courchamp, F.A., 2016. Massive yet
grossly underestimated global costs of invasive insects. Nature Commun. 7, 12986.

dos Santos, J.C.C., Costa, R.N., Silva, D.M.R., de Souza, A.A., de Barros Prado Moura, F.,
da Silva Junior, J.M., Silva, J.V., 2016. Use of allometric models to estimate leaf area
in hymenaea courbaril L. Theoret. Exp. Plant Physiol. 28 (4), 357–369.

Fan, X., Kawamura, K., Guo, W., Xuan, T., Lim, J., Yuba, N., Kurokawa, Y., Obitsu, T., Lv,
R., Tsumiyama, Y., Yasuda, T., Wang, Z., 2018. A simple visible and near-infrared (V-
NIR) camera system for monitoring the leaf area index and growth stage of Ialian
ryegrass. Comput. Electron. Agric. 144, 314–323.

FAO, 2017. The future of food and agriculture - Trends and challenges. Food and
Agriculture Organization of the United Nations, Rome.

Gong, A., Wu, W., Qiu, Z., He, Y., 2013a. Leaf area measurement using android os mobile
phone. Trans. Chinese Soc. Agric. Mach. 44 (9), 203–208.

Gong, A., Wu, X., Qiu, Z., He, Y., 2013b. A handheld device for leaf area measurement.
Comput. Electron. Agric. 98, 74–80.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp.
770–778.

Houborg, R., McCabe, M., 2018. A hybrid training approach for leaf area index estimation
via cubist and random forests machine-learning. ISPRS J. Photogramm. Remote Sens.
135, 173–188.

Karatassiou, M., Ragkos, A., Markidis, P., Stavrou, T., 2015. A comparative study of
methods for the estimation of the leaf area in forage species. In: CEUR Workshop
Proceedings. vol. 1498. pp. 326–332.

Kogan, M., Turnipseed, S., Shepard, B., B. De Oliveira, E., Borgo, A., 1977. Pilot insect
pest management program for soybean in southern brazil. J. Econ. Entomol. 70 (5),
659–663.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097–1105.

Kvet, J., Marshall, J., 1971. Assessment of leaf area and other assimilating plant surfaces.
Plant Photosynth. Prod. Manual Methods 517–555.

Machado, B.B., Orue, J.P., Arruda, M.S., Santos, C.V., Sarath, D.S., Goncalves, W.N., Silva,
G.G., Pistori, H., Roel, A.R., Rodrigues-Jr, J.F., 2016. Bioleaf: a professional mobile
application to measure foliar damage caused by insect herbivory. Comput. Electron.
Agric. 129, 44–55.

Nazaré-Jr, A.C., Menotti, D., Neves, J.M.R., Sediyma, T., 2010. Automatic detection of the
damaged leaf area in digital images of soybean. In: International Conference on
Systems, Signals and Image Processing. pp. 1–4.

Novotný, P., Suk, T., 2013. Leaf recognition of woody species in central Europe. Biosyst.
Eng. 115 (4), 444–452.

Oquab, M., Bottou, L., Laptev, I., Sivic, J., 2014. Learning and transferring mid-level
image representations using convolutional neural networks. In: Proceedings of the
2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer
Society, pp. 1717–1724.

Parmar, D., Ghodasara, Y., Patel, K., Patel, K., Kathiriya, D., Patel, H., 2016. Analysis of
plant leaf area using java image processing techniques - scaling and non scaling.
Ecol., Environ. Conservat. 22 (2), 763–766.

Sarath, D.S., da Silva, G.G., Peruca, R.D., Machado, B.B., Roel, A.R., Pistori, H., 2015.
Automatic quantification of soybean leaf area using color-based image segmentation.
In: X SBIAGRO.

Shen, J., 2003. On the foundations of vision modeling: I. webers law and weberized tv
restoration. Phys. D: Nonlinear Phenomena 175 (3), 241–251.

Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

van der Maaten, L., 2014. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn.
Res. 15, 3221–3245.

Wilhelm, W.W., Ruwe, K., Schlemmer, M.R., 2000. Comparison of three leaf area index
meters in a corn canopy. Crop Sci. 40 (4), 1179–1183.

Fig. 15. Image examples with defoliation of two species: Acer Campestre and
Juglans Regia.

Table 4
Root mean square error (RMSE) for two species using the proposed method.

Acer Campestre Juglans Regia

No training 9.82 (±11.9) 9.62 (±6.8)
Finetuning 5.17 (±4.4) 4.96 (±4.6)

L.A. da Silva et al. Computers and Electronics in Agriculture 156 (2019) 360–368

368

http://refhub.elsevier.com/S0168-1699(18)30790-7/h0005
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0005
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0010
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0010
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0010
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0015
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0015
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0015
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0020
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0020
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0020
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0025
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0025
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0025
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0025
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0035
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0035
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0040
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0040
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0050
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0050
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0050
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0060
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0060
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0060
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0070
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0070
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0075
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0075
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0075
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0075
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0085
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0085
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0090
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0090
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0090
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0090
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0095
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0095
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0095
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0105
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0105
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0115
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0115
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0120
http://refhub.elsevier.com/S0168-1699(18)30790-7/h0120

	Estimating soybean leaf defoliation using convolutional neural networks and synthetic images
	Introduction
	Proposed method
	Image preprocessing
	Synthetic defoliation methods
	CNN modeling and training
	AlexNet
	VGGNet
	ResNet


	Experiments
	Image dataset
	CNN training
	Evaluation metric

	Results and discussions
	Quantitative evaluation
	Qualitative evaluation
	Interpretability of the proposed method
	Comparison with BioLeaf - Foliar Analysis
	Leaf shape influence

	Conclusion
	Acknowledgments
	References




